【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素數(shù)猜想的一個弱化形式.孿生素數(shù)猜想是希爾伯特在二十世紀(jì)初提出的23個數(shù)學(xué)問題之一.可以這樣描述:存在無窮多個素數(shù),使得是素數(shù),稱素數(shù)對為孿生素數(shù).在不超過15的素數(shù)中,隨機(jī)選取兩個不同的數(shù),其中能夠組成孿生素數(shù)的概率是( ).
A.B.C.D.
【答案】C
【解析】
先求得不超過15的素數(shù)的個數(shù),進(jìn)而得出其中能夠組成孿生素數(shù)的組數(shù),結(jié)合排列組合和古典概型的概率計算公式,即可求解.
由題意,存在無窮多個素數(shù),使得是素數(shù),稱素數(shù)對為孿生素數(shù).
其中不超過15的素數(shù)有2,3,5,7,11,13,
可得能夠組成孿生素數(shù)的有,,,
在不超過15的素數(shù)中,隨機(jī)選取兩個不同的數(shù),共有種,
其中能夠組成孿生素數(shù)包含的基本事件個數(shù),
所以其中能夠組成孿生素數(shù)的概率是.
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)拋物線C1:的準(zhǔn)線1與x軸交于橢圓C2:的右焦點F2,F1為C2的左焦點.橢圓的離心率為,拋物線C1與橢圓C2交于x軸上方一點P,連接PF1并延長其交C1于點Q,M為C1上一動點,且在P,Q之間移動.
(1)當(dāng)取最小值時,求C1和C2的方程;
(2)若△PF1F2的邊長恰好是三個連續(xù)的自然數(shù),當(dāng)△MPQ面積取最大值時,求面積最大值以及此時直線MP的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中國決勝全面建成小康社會的關(guān)鍵之年,如何更好地保障和改善民生,如何切實增強(qiáng)政策“獲得感”,成為2019年全國兩會的重要關(guān)切.某地區(qū)為改善民生調(diào)研了甲、乙、丙、丁、戊5個民生項目,得到如下信息:
①若該地區(qū)引進(jìn)甲項目,就必須引進(jìn)與之配套的乙項目;
②丁、戊兩個項目與民生密切相關(guān),這兩個項目至少要引進(jìn)一個;
③乙、丙兩個項目之間有沖突,兩個項目只能引進(jìn)一個;
④丙、丁兩個項目關(guān)聯(lián)度較高,要么同時引進(jìn),要么都不引進(jìn);
⑤若引進(jìn)項目戊,甲、丁兩個項目也必須引進(jìn).
則該地區(qū)應(yīng)引進(jìn)的項目為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,∠CBB1=,點A在平面BCC1B1上的投影為棱BB1的中點E.
(1)求證:四邊形ACC1A1為矩形;
(2)求二面角E-B1C-A1的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)拋物線方程為 (p>0),M為直線上任意一點,過M引拋物線的切線,切點分別為A,B.
(1)求直線AB與軸的交點坐標(biāo);
(2)若E為拋物線弧AB上的動點,拋物線在E點處的切線與三角形MAB的邊MA,MB分別交于點,,記,問是否為定值?若是求出該定值;若不是請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某傳染病疫情爆發(fā)期間,當(dāng)?shù)卣e極整合醫(yī)療資源,建立“艙醫(yī)院”對所有密切接觸者進(jìn)行14天的隔離觀察治療.治療期滿后若檢測指標(biāo)仍未達(dá)到合格標(biāo)準(zhǔn),則轉(zhuǎn)入指定專科醫(yī)院做進(jìn)一步的治療.“艙醫(yī)院”對所有人員在“入口”及“出口”時都進(jìn)行了醫(yī)學(xué)指標(biāo)檢測,若“入口”檢測指標(biāo)在35以下者則不需進(jìn)入“艙醫(yī)院”而是直接進(jìn)入指定專科醫(yī)院進(jìn)行治療.以下是20名進(jìn)入“艙醫(yī)院”的密切接觸者的“入口”及“出口”醫(yī)學(xué)檢測指標(biāo):
入口 | 50 | 35 | 35 | 40 | 55 | 90 | 80 | 60 | 60 | 60 | 65 | 35 | 60 | 90 | 35 | 40 | 55 | 50 | 65 | 50 |
出口 | 70 | 50 | 60 | 50 | 75 | 70 | 85 | 70 | 80 | 70 | 55 | 50 | 75 | 90 | 60 | 60 | 65 | 70 | 75 | 70 |
(Ⅰ)建立關(guān)于的回歸方程;(回歸方程的系數(shù)精確到0.1)
(Ⅱ)如果60是“艙醫(yī)院”的“出口”最低合格指標(biāo),那么,“入口”指標(biāo)低于多少時,將來這些密切接觸者將不能進(jìn)入“艙醫(yī)院”而是直接進(jìn)入指定?漆t(yī)院接受治療.(檢測指標(biāo)為整數(shù))
附注:參考數(shù)據(jù):,.
參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春季氣溫逐漸攀升,病菌滋生傳播快,為了確保安全開學(xué),學(xué)校按30名學(xué)生一批,組織學(xué)生進(jìn)行某種傳染病毒的篩查,學(xué)生先到醫(yī)務(wù)室進(jìn)行血檢,檢呈陽性者需到防疫部門]做進(jìn)一步檢測.學(xué)校綜合考慮了組織管理、醫(yī)學(xué)檢驗?zāi)芰Φ榷嗳f面的因素,根據(jù)經(jīng)驗,采用分組檢測法可有效減少工作量,具體操作如下:將待檢學(xué)生隨機(jī)等分成若干組,先將每組的血樣混在一起化驗,若結(jié)果呈陰性,則可斷定本組血樣合格,不必再做進(jìn)一步的檢測;若結(jié)果呈陽性,則本組中的每名學(xué)生再逐個進(jìn)行檢測.現(xiàn)有兩個分組方案:方案一:將30人分成5組,每組6人;方案二:將30人分成6組,每組5人.已知隨機(jī)抽一人血檢呈陽性的概率為0.5%,且每個人血檢是否呈陽性相互獨立.
(Ⅰ)請幫學(xué)校計算一下哪一個分組方案的工作量較少?
(Ⅱ)已知該傳染疾病的患病率為0.45%,且患該傳染疾病者血檢呈陽性的概率為99.9%,若檢測中有一人血檢呈陽性,求其確實患該傳染疾病的概率.(參考數(shù)據(jù):(,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省級示范高中高三年級對各科考試的評價指標(biāo)中,有“難度系數(shù)“和“區(qū)分度“兩個指標(biāo)中,難度系數(shù),區(qū)分度.
(1)某次數(shù)學(xué)考試(滿分為150分),隨機(jī)從實驗班和普通班各抽取三人,實驗班三人的成績分別為147,142,137;普通班三人的成績分別為97,102,113.通過樣本估計本次考試的區(qū)分度(精確0.01).
(2)如表表格是該校高三年級6次數(shù)學(xué)考試的統(tǒng)計數(shù)據(jù):
難度系數(shù)x | 0.64 | 0.71 | 0.74 | 0.76 | 0.77 | 0.82 |
區(qū)分度y | 0.18 | 0.23 | 0.24 | 0.24 | 0.22 | 0.15 |
①計算相關(guān)系數(shù)r,|r|<0.75時,認(rèn)為相關(guān)性弱;|r|≥0.75時,認(rèn)為相關(guān)性強(qiáng).通過計算說明,能否利用線性回歸模型描述y與x的關(guān)系(精確到0.01).
②ti=|xi﹣0.74|(i=1,2,…,6),求出y關(guān)于t的線性回歸方程,并預(yù)測x=0.75時y的值(精確到0.01).
附注:參考數(shù)據(jù):
參考公式:相關(guān)系數(shù)r,回歸直線的斜率和截距的最小二乘估計分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市組織高三全體學(xué)生參加計算機(jī)操作比賽,等級分為1至10分,隨機(jī)調(diào)閱了A、B兩所學(xué)校各60名學(xué)生的成績,得到樣本數(shù)據(jù)如下:
B校樣本數(shù)據(jù)統(tǒng)計表:
成績(分) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
人數(shù)(個) | 0 | 0 | 0 | 9 | 12 | 21 | 9 | 6 | 3 | 0 |
(1)計算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進(jìn)行比較.
(2)從A校樣本數(shù)據(jù)成績分別為7分、8分和9分的學(xué)生中按分層抽樣方法抽取6人,若從抽取的6人中任選2人參加更高一級的比賽,求這2人成績之和大于或等于15的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com