【題目】甲廠根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品(百臺(tái)),其總成本為(萬(wàn)元),其中固定成本為2萬(wàn)元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為1萬(wàn)元(總成本固定成本+生產(chǎn)成本),銷售收入,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問(wèn)題
(1)寫出利潤(rùn)函數(shù)的解析式(利潤(rùn)銷售收入—總成本);
(2)甲廠生產(chǎn)多少臺(tái)新產(chǎn)品時(shí),可使盈利最多?
【答案】(1)(2)生產(chǎn)4百臺(tái)時(shí),可使盈利最多為4.6萬(wàn)元
【解析】
試題分析:(1)由題意可得f(x)=R(x)-G(x),對(duì)x討論0≤x≤5,x>5即可得到;(2)分別討論0≤x≤5,x>5的函數(shù)的單調(diào)性,即可得到最大值
試題解析:(1)由題意得G(x)=2+x.
∴
(2)當(dāng)x >5時(shí),∵函數(shù)遞減,∴(萬(wàn)元)
當(dāng)0≤x≤5時(shí),
當(dāng)x=4時(shí),有最大值為4.6(萬(wàn))
∵4.6>4.2 , ∴x=4時(shí),有最大值為4.6(萬(wàn))
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=2x5+ax3+bx-3,若f(-4)=10,則f(4)=( )
A.16
B.-10
C.10
D.-16
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),函數(shù),.已知的最小正周期為,且.
(1)求和的值;
(2)求的單調(diào)遞增區(qū)間;
(3)求函數(shù)在區(qū)間上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,是的中點(diǎn),.
(1)已知,,求證:平面;
(2)已知分別是和的中點(diǎn),求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=2x-6經(jīng)過(guò)( )
A.第一、二、三象限
B.第一、二、四象限
C.第一、三、四象限
D.第二、三、四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩種商品,經(jīng)銷這兩種商品所能獲得的利潤(rùn)分別是萬(wàn)元和萬(wàn)元,它們與投入資金萬(wàn)元的關(guān)系為:,今有3萬(wàn)元資金投入經(jīng)營(yíng)這兩種商品.問(wèn):對(duì)乙種商品的資金為多少萬(wàn)元時(shí),能獲得最大利潤(rùn)?最大利潤(rùn)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},則滿足條件ACB的集合C的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)若的定義域和值域均是,求實(shí)數(shù)的值;
(Ⅱ)若在區(qū)間上是減函數(shù),且對(duì)任意的,都有,求實(shí)數(shù)的取值范圍;
(Ⅲ)若,且對(duì)任意的,都存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的奇函數(shù),且時(shí),.
(1)求函數(shù)的解析式,并畫出函數(shù)圖像;
(2)寫出函數(shù)的單調(diào)區(qū)間及值域;
(3)求使恒成立的實(shí)數(shù)的取值范圍.
(注明:(2)(3)可直接寫出答案,不要求寫出解答過(guò)程)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com