13.已知θ為第二象限角,那么$\frac{θ}{3}$是( 。
A.第一或第二象限角B.第一或四象限角
C.第二或四象限角D.第一、二或第四象限角

分析 先表示出第二象限角的范圍,即可求出$\frac{θ}{3}$的范圍,問題得以解決.

解答 解:∵θ為第二象限角,
∴$\frac{π}{2}$+2kπ<θ<π+2kπ,k∈Z,
∴$\frac{π}{6}$+$\frac{2}{3}$kπ<$\frac{θ}{3}$<$\frac{π}{3}$+$\frac{2}{3}$kπ,k∈Z,
當k=0時,$\frac{π}{6}$<$\frac{θ}{3}$<$\frac{π}{3}$,屬于第一象限,
當k=1時,$\frac{5π}{6}$<$\frac{θ}{3}$<π,屬于第二象限
當k=-1時,-$\frac{π}{2}$<$\frac{θ}{3}$<-$\frac{π}{3}$,屬于第四象限,
∴$\frac{θ}{3}$第一,二或四象限角,
故選:D

點評 本題考查了象限角的問題,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.下列命題中錯誤的是( 。
A.命題“?x∈[0,1],使x2-1≥0的否定為“?x∈[0,1],都有x2-1<0”
B.命題p為假命題,命題q為真命題,則(¬p)∨(¬q)為真命題
C.命題“若x,y均為奇數(shù),則x+y為奇數(shù)”及它的逆命題均為假命題
D.命題“若x2+2x=0,則x=0或x=2”的逆否命題為“若x≠0或x≠2,則x2+2x≠0”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖所示,△ABC是正三角形,AE和CD都垂直于平面ABC,且AE=AB=4,CD=2,F(xiàn)是BE的中點.
(1)求幾何體ABCDE的體積;
(2)求證:AF⊥BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某中學將100名髙一新生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A、B兩種不同的教學方式分別在甲、乙兩個班級進行教改實驗.為了解教學效果,期末考試后,陳老師對甲、乙兩個班級的學生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如圖).記成績不低于90分者為“成績優(yōu)秀”.
(Ⅰ)從乙班隨機抽取2名學生的成績,記“成績優(yōu)秀”的個數(shù)為ξ,求ξ=1的概率
(Ⅱ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表,并判斷是否有95%的把握認為:“成績優(yōu)秀”與教學方式有關.
甲班(A方式)乙班(B方式)總計
成績優(yōu)秀12416          
成績不優(yōu)秀384684
總計5050100
附:K2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k) 0.25 0.15 0.10 0.05 0.025
 k 1.323 2.072 2.706 3.841 5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在平面直角坐標系中,?ABCD的對角線所在的直線相交于(0,1),若邊AB所在直線的方程為x-2y-2=0,則邊AB的對邊CD所在直線的方程為( 。
A.x-2y-4=0B.x-2y+6=0C.x-2y-6=0D.x-2y+4=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設函數(shù)f′(x)是偶函數(shù)f(x)(x∈R)的導函數(shù),f(-3)=0,當x>0時,xf′(x)-f(x)<0,則使得f(x)<0成立的x的取值范圍是( 。
A.(-∞,-3)∪(3,+∞)B.(-∞,-3)∪(0,3)C.(-3,0)∪(0,3)D.(-3,0)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知集合A={x|y=$\sqrt{2-x}$},B={x|y=log2(x-1)},則A∩B=(  )
A.{x|0≤x<3}B.{x|1<x≤2}C.{x|1<x<3}D.{x|x≤2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+{x^2}-3x+4$.
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)的極大值與極小值;
(3)寫出利用導數(shù)方法求函數(shù)極值點的步驟.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.當x>0時,不等式x+$\frac{1}{x}$≥a恒成立,則實數(shù)a的取值范圍是(-∞,2].

查看答案和解析>>

同步練習冊答案