5.已知集合A={x|y=$\sqrt{2-x}$},B={x|y=log2(x-1)},則A∩B=( 。
A.{x|0≤x<3}B.{x|1<x≤2}C.{x|1<x<3}D.{x|x≤2}

分析 求出A中x的范圍確定出A,求出B中x的范圍確定出B,找出A與B的交集即可.

解答 解:由A中y=$\sqrt{2-x}$,得到2-x≥0,
解得:x≤2,即A={x|x≤2},
由B中y=log2(x-1),得到x-1>0,
解得:x>1,即B={x|x>1},
則A∩B={x|1<x≤2},
故選:B.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知(1-$\frac{x}{3}$)2015=a0+a1x+…+a2015x2015,則3a1+32a2+…+32015a2015=( 。
A.0B.1C.-1D.22015-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知AB是⊙O的直徑,C是⊙O上異于A,B的點(diǎn),VC垂直于⊙O所在的平面,且AB=4,VC=3.
(Ⅰ)若點(diǎn)D在△VCB內(nèi),且DO∥面VAC,作出點(diǎn)D的軌跡,說明作法及理由;
(Ⅱ)求三棱錐V-ABC體積的最大值,并求取到最大值時(shí),直線AB與平面VAC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知θ為第二象限角,那么$\frac{θ}{3}$是( 。
A.第一或第二象限角B.第一或四象限角
C.第二或四象限角D.第一、二或第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知隨機(jī)變量X,Y滿足X+Y=8,若X~B(10,0.6),則E(Y),D(Y)分別是( 。
A.6和2.4B.2和2.4C.2和5.6D.6和5.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知點(diǎn)P是單位圓上的一個(gè)質(zhì)點(diǎn),它從初始位置P0($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$)開始,按逆時(shí)針方向以角速度1rad/s做圓周運(yùn)動(dòng).則點(diǎn)P的縱坐標(biāo)y關(guān)于時(shí)間t(單位:s)的函數(shù)關(guān)系為( 。
A.y=sin(t-$\frac{π}{3}$),t≥0B.y=sin(t-$\frac{π}{6}$),t≥0C.y=-cos(t-$\frac{π}{3}$),t≥0D.y=-cos(t-$\frac{π}{6}$),t≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=[cos($\frac{π}{2}$-x)-$\sqrt{3}$cosx]cosx.
(1)求f(x)的最小正周期和最大值;
(2)討論f(x)在[$\frac{π}{4}$,$\frac{3π}{4}$]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若(x+$\frac{1}{x}$)(2ax-1)5的展開式中各項(xiàng)系數(shù)的和為2,則展開式中的常數(shù)項(xiàng)為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.?dāng)?shù)列{an}滿足a1=1,對(duì)任意的n∈N*都有an+1=an+n+1,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2017}}$=( 。
A.$\frac{2016}{2017}$B.$\frac{4032}{2017}$C.$\frac{4034}{2018}$D.$\frac{2017}{2018}$

查看答案和解析>>

同步練習(xí)冊(cè)答案