【題目】我國是世界上嚴(yán)重缺水的國家,城市缺水問題較為突出.某市政府為了節(jié)約用水,市民用水?dāng)M實行階梯水價.每人月用水量中不超過立方米的部分按4/立方米收費,超出立方米的部分按10/立方米收費.從該市隨機調(diào)查了10 000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖:

1)如果為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價格為4/立方米,至少定為多少?

2)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替.當(dāng)=3時,試完成該10000位居民該月水費的頻率分布表,并估計該市居民該月的人均水費.

組號

1

2

3

4

5

6

7

8

分組

頻率

【答案】(1)3;(2)圖見解析,10.5元

【解析】

(1)根據(jù)用水量的頻率分布直方圖求得該月用水量在區(qū)間,,內(nèi)的頻率,再根據(jù)為整數(shù)可確定至少定為;

(2)利用同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,結(jié)合直方圖的頻率利用均值公式可以求得答案.

1)由用水量的頻率分布直方圖知,該市居民該月用水量在區(qū)間,,,,內(nèi)的頻率依次為,,

所以該月用水量不超過立方米的居民占%,用水量不超過立方米的居民占%

依題意,至少定為

2)由用水量的頻率分布直方圖及題意,得居民該月用水費用的數(shù)據(jù)分組與頻率分布表:

組號

1

2

3

4

5

6

7

8

分組

頻率

根據(jù)題意,該市居民該月的人均水費估計為:

=10.5(元).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場營銷人員進(jìn)行某商品市場營銷調(diào)查發(fā)現(xiàn),每回饋消費者一定的點數(shù),該商品當(dāng)天的銷量就會發(fā)生一定的變化,經(jīng)過試點統(tǒng)計得到以下表:

反饋點數(shù)

1

2

3

4

5

銷量(百件)/天

0.5

0.6

1

1.4

1.7

(1)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當(dāng)?shù)卦撋唐芬惶熹N量(百件)與該天返還點數(shù)之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測若返回6個點時該商品當(dāng)天銷量;

(2)若節(jié)日期間營銷部對商品進(jìn)行新一輪調(diào)整.已知某地擬購買該商品的消費群體十分龐大,經(jīng)過營銷部調(diào)研機構(gòu)對其中的200名消費者的返點數(shù)額的心理預(yù)期值進(jìn)行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

返還點數(shù)預(yù)期值區(qū)間(百分比)

頻數(shù)

20

60

60

30

20

10

將對返還點數(shù)的心理預(yù)期值在的消費者分別定義為“欲望緊縮型”消費者和“欲望膨脹型”消費者,現(xiàn)采用分層抽樣的方法從位于這兩個區(qū)間的30名消費者中隨機抽取6名,再從這6人中隨機抽取3名進(jìn)行跟蹤調(diào)查,求抽出的3人中至少有1名“欲望膨脹型”消費者的概率.(參考公式及數(shù)據(jù):①回歸方程,其中;②.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)有兩個極值點,且,則實數(shù)的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是空氣質(zhì)量的一個重要指標(biāo),我國標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即日均值在以下空氣質(zhì)量為一級,在之間空氣質(zhì)量為二級,在以上空氣質(zhì)量為超標(biāo).如圖是某地日到日均值(單位:)的統(tǒng)計數(shù)據(jù),則下列敘述不正確的是(

A.日到日,日均值逐漸降低

B.天的日均值的中位數(shù)是

C.天中日均值的平均數(shù)是

D.從這天的日均監(jiān)測數(shù)據(jù)中隨機抽出一天的數(shù)據(jù),空氣質(zhì)量為一級的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績落在[50,60)與[60,70)中的學(xué)生人數(shù);

(3)從成績在[50,70)的學(xué)生中人選2人,求這2人的成績都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖甲所示, 是梯形的高, , ,現(xiàn)將梯形沿折起如圖乙所示的四棱錐,使得,點是線段上一動點.

(1)證明: 不可能垂直;

(2)當(dāng)時,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年11月15日,我市召開全市創(chuàng)建全國文明城市動員大會,會議向全市人民發(fā)出動員令,吹響了集結(jié)號.為了了解哪些人更關(guān)注此活動,某機構(gòu)隨機抽取了年齡在15~75歲之間的100人進(jìn)行調(diào)查,并按年齡繪制的頻率分布直方圖如圖所示,其分組區(qū)間為:,,,,.把年齡落在內(nèi)的人分別稱為“青少年人”和“中老年人”,經(jīng)統(tǒng)計“青少年人”與“中老年人”的人數(shù)之比為.

(1)求圖中的值,若以每個小區(qū)間的中點值代替該區(qū)間的平均值,估計這100人年齡的平均值

(2)若“青少年人”中有15人關(guān)注此活動,根據(jù)已知條件完成題中的列聯(lián)表,根據(jù)此統(tǒng)計結(jié)果,問能否有的把握認(rèn)為“中老年人”比“青少年人”更加關(guān)注此活動?

關(guān)注

不關(guān)注

合計

青少年人

15

中老年人

合計

50

50

100

0.050

0.010

0.001

3.841

6.635

10.828

附參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知過點的橢圓的離心率為,左頂點和上頂點分別為AB

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若P為線段OD延長線上一點,直線PA交橢圓于另一點E,直線PB交橢圓于另一點Q

①求直線PAPB的斜率之積;

②判斷直線ABEQ是否平行?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一顆骰子先后拋擲2次,觀察向上的點數(shù).

1 列舉出所有可能的結(jié)果,并求兩點數(shù)之和為5的概率;

2 求以第一次向上點數(shù)為橫坐標(biāo)x,第二次向上的點數(shù)為縱坐標(biāo)y的點在圓 的內(nèi)部的概率.

查看答案和解析>>

同步練習(xí)冊答案