【題目】某地級市共有200000中小學(xué)生,其中有7%學(xué)生在2017年享受了“國家精準(zhǔn)扶貧”政策,在享受“國家精準(zhǔn)扶貧”政策的學(xué)生中困難程度分為三個等次:一般困難、很困難、特別困難,且人數(shù)之比為5:3:2,為進(jìn)一步幫助這些學(xué)生,當(dāng)?shù)厥姓O(shè)立“專項教育基金”,對這三個等次的困難學(xué)生每年每人分別補(bǔ)助1000元、1500元、2000元。經(jīng)濟(jì)學(xué)家調(diào)查發(fā)現(xiàn),當(dāng)?shù)厝司芍淠晔杖胼^上一年每增加n%,一般困難的學(xué)生中有3n%會脫貧,脫貧后將不再享受“精準(zhǔn)扶貧”政策,很困難的學(xué)生中有2n%轉(zhuǎn)為一般困難,特別困難的學(xué)生中有n%轉(zhuǎn)為很困難,F(xiàn)統(tǒng)計了該地級市2013年到2017年共5年的人均可支配年收入,對數(shù)據(jù)初步處理后得到了如圖所示的散點圖和表中統(tǒng)計量的值,其中年份取13時代表2013年, 與(萬元)近似滿足關(guān)系式,其中為常數(shù)。(2013年至2019年該市中學(xué)生人數(shù)大致保持不變)
其中,
(Ⅰ)估計該市2018年人均可支配年收入;
(Ⅱ)求該市2018年的“專項教育基金”的財政預(yù)算大約為多少?
附:①對于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),其回歸直線方程
的斜率和截距的最小二乘估計分別為
②
【答案】(Ⅰ)2.8(萬);(Ⅱ)1624萬.
【解析】試題分析:(Ⅰ)由得,所以 , ,即可得解;
(Ⅱ)由題意知2017年時該市享受“國家精準(zhǔn)扶貧”政策的學(xué)生人數(shù),一般困難、很困難、特別困難的中學(xué)生人數(shù), 018年人均可支配收入比2017年增長,據(jù)此可得2018年該市特別困難、很困難、一般困難的學(xué)生的中學(xué)生人數(shù),即可得解.
試題解析:
(Ⅰ)因為,所以.
由得,
所以 , ,所以,所以.
當(dāng)時,2018年人均可支配年收入(萬)
(Ⅱ)由題意知2017年時該市享受“國家精準(zhǔn)扶貧”政策的學(xué)生共200000×7%=14000人
一般困難、很困難、特別困難的中學(xué)生依次有7000人、4200人、2800人, 2018年人均可支配收入比2017年增長
所以2018年該市特別困難的中學(xué)生有2800×(1-10%)=2520人,
很困難的學(xué)生有4200×(1-20%)+2800×10%=3640人
一般困難的學(xué)生有7000×(1-30%)+4200×20%=5740人.
所以2018年的“專項教育基金”的財政預(yù)算大約為5740×1000+3640×1500+2520×2000=1624萬
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4 — 4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為().
(1)分別寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)已知點,直線與曲線相交于兩點,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的兩個焦點分別為,點M(1,0)與橢圓短軸的兩個端點的連線相互垂直.
(1)求橢圓C的方程;
(2)過點M(1,0)的直線與橢圓C相交于A、B兩點,設(shè)點N(3,2),記直線AN、BN的斜率分別為k1、k2,求證:k1+k2為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處取得極小值.
(1)求實數(shù)的值;
(2)設(shè),其導(dǎo)函數(shù)為,若的圖象交軸于兩點且,設(shè)線段的中點為,試問是否為的根?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域在上的函數(shù)滿足對于任意的,都有,當(dāng)且僅當(dāng)時,成立.
(1)設(shè),求證;
(2)設(shè),若,試比較x1與x2的大;
(3)若,解關(guān)于x的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知隨機(jī)變量ξi滿足P(ξi=1)=pi,P(ξi=0)=1-pi,i=1,2.若0<p1<p2<,則( )
A. E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)
B. E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)
C. E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)
D. E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年10月1日為慶祝中國人民共和國成立70周年在北京天安門廣場舉行了盛大的閱兵儀式,共有580臺(套)裝備、160余架各型飛機(jī)接受檢閱,受閱裝備均為中國國產(chǎn)現(xiàn)役主戰(zhàn)裝備,其中包括部分首次公開亮相的新型裝備.例如,在無人作戰(zhàn)第三方隊中就包括了兩型偵察干擾無人機(jī),可以在遙控設(shè)備或自備程序控制操縱的情況下執(zhí)行任務(wù),進(jìn)行對敵方通訊設(shè)施的電磁壓制和干擾,甚至壓制敵人的防空系統(tǒng).某作戰(zhàn)部門對某處的戰(zhàn)場實施“電磁干擾”實驗,據(jù)測定,該處的“干擾指數(shù)”與無人機(jī)干擾源的強(qiáng)度和距離之比成正比,比例系數(shù)為常數(shù)(),現(xiàn)已知相距36的、兩處配置兩架無人機(jī)干擾源,其對敵干擾的強(qiáng)度分別為1和(),它們連線段上任意一點處的干擾指數(shù)等于兩機(jī)對該處的干擾指數(shù)之和,設(shè)().
(1)試將表示為的函數(shù),指出其定義域;
(2)當(dāng),時,試確定“干擾指數(shù)”最小時所處位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),則下列結(jié)論正確的是( )
①P(|ξ|<a)=P(ξ<a)+P(ξ>-a)(a>0);②P(|ξ|<a)=2P(ξ<a)-1(a>0);③P(|ξ|<a)=1-2P(ξ<a)(a>0);④P(|ξ|<a)=1-P(|ξ|≥a)(a>0).
A. ①② B. ②③
C. ①④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人同時參加一次數(shù)學(xué)測試,共有20道選擇題,每題均有4個選項,答對得3分,答錯或不答得0分,甲和乙都解答了所有的試題,經(jīng)比較,他們只有2道題的選項不同,如果甲最終的得分為54分,那么乙的所有可能的得分值組成的集合為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com