11.若實(shí)數(shù)a,b滿足4a=3b=6,則$\frac{1}{a}+\frac{2}$=2.

分析 由4a=3b=6,化為對(duì)數(shù)式$a=\frac{lg6}{lg4}$,b=$\frac{lg6}{lg3}$.代入即可得出.

解答 解:由4a=3b=6,
可得$a=\frac{lg6}{lg4}$,b=$\frac{lg6}{lg3}$.
則$\frac{1}{a}+\frac{2}$=$\frac{lg4}{lg6}$+$\frac{2lg3}{lg6}$=$\frac{2lg6}{lg6}$=2.
故答案為:2.

點(diǎn)評(píng) 本題考查了指數(shù)式化為對(duì)數(shù)式、對(duì)數(shù)的運(yùn)算法則,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.方程2a=|ax-1|(a>0且a≠1)有兩個(gè)不同的解,則a的取值范圍為(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)和為Sn,且2Sn+3=3an(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3an,Tn=$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+…+$\frac{_{n}}{{a}_{n}}$,求證:${T_n}<\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若$B+C=\frac{2π}{3}$,$a=\sqrt{2}$,則b2+c2的取值范圍是( 。
A.(3,6)B.(3,6]C.(2,4)D.(2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{3x-y≤3}\end{array}\right.$,目標(biāo)函數(shù)z=ax+2y僅在點(diǎn)(1,0)處取得最小值,則a的取值范圍是( 。
A.[-6,2]B.(-6,2)C.[-3,1]D.(-3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.f(x)=loga$\frac{1-mx}{1-x}$為奇函數(shù)(a>1)
(1)求實(shí)數(shù)m的值;
(2)解不等式f(x-$\frac{1}{2}$)+f($\frac{1}{4}$-x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知Sn為公差不為0的等差數(shù)列{an}的前n項(xiàng)和,且a1=1,S1,S2,S4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知i是虛數(shù)單位,則$\frac{3-i}{1+i}$的模與虛部的積等于( 。
A.$2\sqrt{5}i$B.$-2\sqrt{5}i$C.$2\sqrt{5}$D.$-2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn+1=kSn+p(kp≠0),a1=p(n∈N).
(1)求證:數(shù)列{an}是以k為公比的等比數(shù)列.并求出數(shù)列{an}的通項(xiàng)公式;
(2)已知k>-1,m,n是正整數(shù),求證:km+kn≤1+km+n;
(3)若p=1,k>-1,求證;Sn≤$\frac{n({a}_{1}+{a}_{2})}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案