【題目】若函數(shù)和滿足:在區(qū)間上均有定義;函數(shù)在區(qū)間上至少有一個(gè)零點(diǎn),則稱和在上具有關(guān)系W.
若,,判斷和在上是否具有關(guān)系W,并說明理由;
若和在上具有關(guān)系W,求實(shí)數(shù)m的取值范圍.
【答案】(1)見解析;(2) .
【解析】
(1)根據(jù)[a,b]上至少有一個(gè)零點(diǎn),則稱f(x)和g(x)在區(qū)間[a,b]上具有關(guān)系G.利用特殊值但判斷出即可;(2)根據(jù)在區(qū)間[a,b]上具有關(guān)系G的性質(zhì),結(jié)合x∈[1,4],利用二次函數(shù)的性質(zhì),討論m即可.
(1)f(x)和g(x)在[1,3]具有關(guān)系G.
令h(x)=f(x)﹣g(x)=lnx+x﹣2,
∵h(yuǎn)(1)=﹣1<0,h(2)=ln2>0;
故h(1)h(2)<0,又h(x)在[1,2]上連續(xù),
故函數(shù)y=f(x)﹣g(x)在區(qū)間[1,2]上至少有一個(gè)零點(diǎn),
故f(x)和g(x)在[1,3]上具有關(guān)系G;
(2)令h(x)=f(x)﹣g(x)=2|x﹣2|+1﹣mx2,
當(dāng)m≤0時(shí),易知h(x)在[1,4]上不存在零點(diǎn),
當(dāng)m>0時(shí),h(x)=,
當(dāng)1≤x≤2時(shí),
由二次函數(shù)知h(x)在[1,2]上單調(diào)遞減,
故,
故m∈[,3],
當(dāng)m∈(0,)∪(3,+∞)時(shí),
若m∈(0,),則h(x)在(2,4]上單調(diào)遞增,
而h(2)>0,h(4)>0;
故沒有零點(diǎn);
若m∈(3,+∞),則h(x)在(2,4]上單調(diào)遞減,
此時(shí),h(2)=﹣4m+1<0;
故沒有零點(diǎn);
綜上所述,
若f(x)=2|x﹣2|+1和g(x)=mx2在[1,4]上具有關(guān)系G,
則m∈[,3].
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在扶貧活動(dòng)中,為了盡快脫貧(無債務(wù))致富,企業(yè)甲將經(jīng)營狀況良好的某種消費(fèi)品專賣店以5.8萬元的優(yōu)惠價(jià)格轉(zhuǎn)讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費(fèi)的開支3 600元后,逐步償還轉(zhuǎn)讓費(fèi)(不計(jì)息).在甲提供的資料中:①這種消費(fèi)品的進(jìn)價(jià)為每件14元;②該店月銷量Q(百件)與銷售價(jià)格P(元)的關(guān)系如圖所示;③每月需各種開支2 000元.
(1)當(dāng)商品的價(jià)格為每件多少元時(shí),月利潤扣除職工最低生活費(fèi)的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(且)是奇函數(shù).
(1)求常數(shù)的值;
(2)若,試判斷函數(shù)的單調(diào)性,并加以證明;
(3)若,且函數(shù)在區(qū)間上的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓 (a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 點(diǎn)D在橢圓上.DF1⊥F1F2 , =2 ,△DF1F2的面積為 .
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)圓心在y軸上的圓與橢圓在x軸的上方有兩個(gè)交點(diǎn),且圓在這兩個(gè)交點(diǎn)處的兩條切線相互垂直并分別過不同的焦點(diǎn),求圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)通過調(diào)查問卷(滿分50分)的形式對本企業(yè)900名員工的工作滿意程度進(jìn)行調(diào)查,并隨機(jī)抽取了其中30名員工(16名女工,14名男工)的得分,如下表:
女 | 47 | 36 | 32 | 48 | 34 | 44 | 43 | 47 | 46 | 41 | 43 | 42 | 50 | 43 | 35 | 49 |
男 | 37 | 35 | 34 | 43 | 46 | 36 | 38 | 40 | 39 | 32 | 48 | 33 | 40 | 34 |
(1)根據(jù)以上數(shù)據(jù),估計(jì)該企業(yè)得分大于45分的員工人數(shù);
(2)現(xiàn)用計(jì)算器求得這30名員工的平均得分為40.5分,若規(guī)定大于平局得分為 “滿意”,否則為 “不滿意”,請完成下列表格:
“滿意”的人數(shù) | “不滿意”的人數(shù) | 合計(jì) | |
女員工 | 16 | ||
男員工 | 14 | ||
合計(jì) | 30 |
(3)根據(jù)上述表中數(shù)據(jù),利用獨(dú)立性檢驗(yàn)的方法判斷,能否在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為該企業(yè)員工“性別”與“工作是否滿意”有關(guān)?
參考數(shù)據(jù):
P(K2K) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
K | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知S2=4,an+1=2Sn+1,n∈N*.
(1)求通項(xiàng)公式an;
(2)求數(shù)列{|an-n-2|}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}和{bn}滿足a1a2a3…an= (n∈N*).若{an}為等比數(shù)列,且a1=2,b3=6+b2 .
(1)求an和bn;
(2)設(shè)cn= (n∈N*).記數(shù)列{cn}的前n項(xiàng)和為Sn .
(i)求Sn;
(ii)求正整數(shù)k,使得對任意n∈N*均有Sk≥Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)為了解在校本科生對參加某項(xiàng)社會(huì)實(shí)踐活動(dòng)的意向,擬采用分層抽樣的方向,從該校四個(gè)年級的本科生中抽取一個(gè)容量為300的樣本進(jìn)行調(diào)查,已知該校一年級、二年級、三年級、四年級的本科生人數(shù)之比為4:5:5:6,則應(yīng)從一年級本科生中抽取名學(xué)生.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的公差為d,點(diǎn)(an , bn)在函數(shù)f(x)=2x的圖象上(n∈N*).
(1)若a1=﹣2,點(diǎn)(a8 , 4b7)在函數(shù)f(x)的圖象上,求數(shù)列{an}的前n項(xiàng)和Sn;
(2)若a1=1,函數(shù)f(x)的圖象在點(diǎn)(a2 , b2)處的切線在x軸上的截距為2﹣ ,求數(shù)列{ }的前n項(xiàng)和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com