3.在正六邊形ABCDEF中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AF}$=$\overrightarrow$,求$\overrightarrow{AC}$,$\overrightarrow{AD}$,$\overrightarrow{AE}$.

分析 由正六邊形的性質(zhì)可知AD=2AO,四邊形ABOF是平行四邊形,且正六邊形的對邊平行且相等,根據(jù)平面向量線性運算的幾何意義得出.

解答 解:$\overrightarrow{AD}=2\overrightarrow{AO}$=2($\overrightarrow{AB}+\overrightarrow{AF}$)=2$\overrightarrow{a}+2\overrightarrow$.
$\overrightarrow{AC}=\overrightarrow{AD}+\overrightarrow{DC}$=$\overrightarrow{AD}-\overrightarrow{CD}$=$\overrightarrow{AD}-\overrightarrow{AF}$=2$\overrightarrow{a}$+$\overrightarrow$.
$\overrightarrow{AE}=\overrightarrow{AD}+\overrightarrow{DE}$=$\overrightarrow{AD}-\overrightarrow{ED}=\overrightarrow{AD}-\overrightarrow{AB}$=$\overrightarrow{a}+2\overrightarrow$.

點評 本題考查了平面向量加減運算的幾何意義,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)的定義域為D,若對于任意x1,x2∈D,當x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個條件:①f(0)=0;②$f(\frac{x}{3})=\frac{1}{2}f(x)$;③f(1-x)=1-f(x).則$f(\frac{1}{3})+f(\frac{1}{8})$=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若${C}_{m}^{2}$=28,則m等于( 。
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點,過F2與雙曲線的一條漸近線平行的直線與另一條漸近線交于點M,且cos∠F1MF2=$\frac{\sqrt{5}}{5}$,則雙曲線的離心率為$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在數(shù)列{an}中,a1=1,若an-an-1=n-1(n∈N*,n≥2),則數(shù)列{an}的通項公式an=( 。
A.$\frac{n(n+1)}{2}$B.$\frac{{n}^{2}-n+2}{2}$C.2n2-nD.2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.△ABC三邊分別是a、b、c,其對角分別是A、B、C,則下列各組命題中正確的是( 。
A.A=30°,b=6,a=2.5,此三角形有兩解B.A=30°,b=6,a=3,此三角形無解
C.A=30°,b=6,a=7,此三角形無解D.A=30°,b=6,a=4,此三角形有兩解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an},首項為a1=λ(λ∈R),前n項和為Sn,且Sn+1=2Sn+n.
(1)求數(shù)列{an}的通項公式;
(2)若λ=0,求數(shù)列{an•ln(an+1)}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求證:1•${A}_{1}^{1}$+2${•A}_{2}^{2}$+3${•A}_{3}^{3}$+…+(n-1)${A}_{n-1}^{n-1}$=n!-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知|$\overrightarrow{a}$|=3,|$\overrightarrow$|=6,當①$\overrightarrow{a}$∥$\overrightarrow$,②$\overrightarrow{a}$⊥$\overrightarrow$,③$\overrightarrow{a}$與$\overrightarrow$的夾角是60°時,分別求$\overrightarrow{a}$•$\overrightarrow$.

查看答案和解析>>

同步練習冊答案