12.求證:1•${A}_{1}^{1}$+2${•A}_{2}^{2}$+3${•A}_{3}^{3}$+…+(n-1)${A}_{n-1}^{n-1}$=n!-1.

分析 根據(jù)An+1n+1-Ann=nAnn對式子進(jìn)行化簡,即可證明1A11+2A22+3A33+…+nAnn=n!-1.

解答 證明:∵n${A}_{n}^{n}$=n•n!=(n+1)!-n!=${A}_{n+1}^{n+1}$-${A}_{n}^{n}$,
∴1•${A}_{1}^{1}$+2${•A}_{2}^{2}$+3${•A}_{3}^{3}$+…+(n-1)${A}_{n-1}^{n-1}$
=(A22-A11)+(A33-A22)+…+(Ann-An-1n-1
=Ann-A11
=n!-1.

點(diǎn)評 本題考查了排列數(shù)公式的應(yīng)用問題,利用公式An+1n+1-Ann=nAnn對式子進(jìn)行化簡是解題的關(guān)鍵,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若y=sin$\frac{2π}{3}$,則y′=(  )
A.-$\frac{\sqrt{3}}{2}$B.0C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在正六邊形ABCDEF中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AF}$=$\overrightarrow$,求$\overrightarrow{AC}$,$\overrightarrow{AD}$,$\overrightarrow{AE}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知橢圓有如下性質(zhì):F是橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn),直線l:x=$\frac{{a}^{2}}{c}$為C的右準(zhǔn)線,點(diǎn)P是橢圓上的任意一點(diǎn),設(shè)d表示P到l的距離,那么可得$\frac{|PF|}5rdjxd5$=t(t為定值).類比橢圓的上述性質(zhì),雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}$=1上一點(diǎn)P到右焦點(diǎn)F與右準(zhǔn)線的距離d之比為(  )
A.$\frac{1}{2}$B.$\sqrt{2}$C.2D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.比較${∫}_{0}^{\frac{π}{2}}$sin5xdx與${∫}_{0}^{\frac{π}{2}}$sinxdx的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.光線沿著直線y=-3x+b射到直線x+y=0上,經(jīng)反射后沿著直線y=ax+2射出,則有(  )
A.a=$\frac{1}{3}$,b=6B.a=-$\frac{1}{3}$,b=-6C.a=3,b=-$\frac{1}{6}$D.a=-3,b=$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.銳角三角形ABC中,角A,B,C所對的邊分別為a,b,c,且c-a(cosB+$\frac{\sqrt{3}}{3}$sinB)=0.
(1)求角A的大;
(2)若a=$\sqrt{3}$,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若${C}_{n}^{0}$+$\frac{1}{2}$${C}_{n}^{1}$+$\frac{1}{3}$${C}_{n}^{2}$+…+$\frac{1}{n+1}$${C}_{n}^{n}$=$\frac{31}{n+1}$,求(1-2x)2n的展開式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)$f(x)={log_2}({2x-{x^2}})$單調(diào)減區(qū)間為[1,2).

查看答案和解析>>

同步練習(xí)冊答案