3.閱讀如圖的程序的框圖,則輸出S=( 。
A.30B.50C.60D.70

分析 模擬執(zhí)行程序框圖,依次寫(xiě)出每次循環(huán)得到的S,i的值,當(dāng)i=11時(shí),不滿足條件i≤9,退出循環(huán),輸出S的值為50.

解答 解:模擬執(zhí)行程序框圖,可得
S=0,i=1
S=2,i=3
滿足條件i≤9,S=8,i=5
滿足條件i≤9,S=18,i=7
滿足條件i≤9,S=32,i=9
滿足條件i≤9,S=50,i=11
不滿足條件i≤9,退出循環(huán),輸出S的值為50.
故選:B.

點(diǎn)評(píng) 本題主要考察了循環(huán)結(jié)構(gòu)的程序框圖,依次正確寫(xiě)出每次循環(huán)得到的S,i的值是解題的關(guān)鍵,屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在△ABC 中,角 A,B,C所對(duì)的邊分別為a,b,c,若A=$\frac{π}{3}$,cosB=$\frac{2\sqrt{7}}{7}$,b=2,則a=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}滿足a1=3,an+1-3an=3n(n∈N*),數(shù)列{bn}滿足bn=$\frac{a_n}{3^n}$.
(Ⅰ)求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知直線C1:$\left\{\begin{array}{l}{x=-1+t}\\{y=-1+at}\end{array}\right.$(t為參數(shù))與圓C2:ρ=2交于A、B兩點(diǎn),當(dāng)|AB|最小時(shí),a的取值為( 。
A.4B.2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.為調(diào)查學(xué)生身高的情況,隨機(jī)抽測(cè)了高三兩個(gè)班120名學(xué)生的身高(單位:cm),所得數(shù)據(jù)均在區(qū)間[140,190]上,其頻率分布直方圖如圖所示(左下),則在抽測(cè)的120名學(xué)生中,身高位于區(qū)間[160,180)上的人數(shù)為(  )
A.70B.71C.72D.73

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知a>0,實(shí)數(shù)x,y滿足:$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$,若z=2x+y的最小值為1,則a=(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=x2+$\frac{2}{x}$+alnx.
(Ⅰ)若f(x)在區(qū)間[2,3]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)f(x)的導(dǎo)函數(shù)f′(x)的圖象為曲線C,曲線C上的不同兩點(diǎn)A(x1,y1)、B(x2,y2)所在直線的斜率為k,求證:當(dāng)a≤4時(shí),|k|>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.為了解一種植物的生長(zhǎng)情況,抽取一批該植物樣本測(cè)量高度(單位:cm),其頻率分布直方圖如圖所示
(1)求該植物樣本高度的平均數(shù)$\overrightarrow{x}$和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)
(2)假設(shè)該植物的高度Z服從正態(tài)分布N(μ,a2),其中μ近似為平均數(shù)$\overrightarrow{x}$,a2近似為樣本方差s2,利用該正態(tài)分布求P(64.5<Z<96)
附:$\sqrt{110}$≈10.5,若Z~N(μ,a2),則P(μ-?<Z<μ+?)=0.6826,P(μ-2?<Z<μ+2?)=0.9544.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)函數(shù)f(x)=|x-a|+1,a∈R
(1)當(dāng)a=4時(shí),解不等式f(x)<1+|2x+1|
(2)若f(x)≤2的解集為[0,2],$\frac{1}{m}$+$\frac{1}{n}$=a(m>0,n>0)求證:m+2n≥3+2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案