A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線(xiàn)性規(guī)劃的知識(shí),通過(guò)平移即先確定z的最優(yōu)解,然后確定a的值即可.
解答 解:作出不等式對(duì)應(yīng)的平面區(qū)域,(陰影部分)
由z=2x+y,得y=-2x+z,
平移直線(xiàn)y=-2x+z,由圖象可知當(dāng)直線(xiàn)y=-2x+z經(jīng)過(guò)點(diǎn)C時(shí),直線(xiàn)y=-2x+z的截距最小,此時(shí)z最。
即2x+y=1,
由$\left\{\begin{array}{l}{x=1}\\{2x+y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$,
即C(1,-1),
∵點(diǎn)C也在直線(xiàn)y=a(x-3)上,
∴-1=-2a,
解得a=$\frac{1}{2}$.
故選:C.
點(diǎn)評(píng) 本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線(xiàn)性規(guī)劃題目的常用方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\sqrt{1-{k}^{2}}$ | B. | $\sqrt{1-{k}^{2}}$ | C. | ±$\sqrt{1-{k}^{2}}$ | D. | -k |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com