6.設(shè)a,b,c∈R且a>b,則下列關(guān)系式正確的是(  )
A.ac2>bc2B.a2>b2C.$\frac{1}{a}<\frac{1}$D.a3>b3

分析 根據(jù)題意,利用不等式的性質(zhì)依次分析選項,綜合即可得答案.

解答 解:根據(jù)題意,依次分析選項:
對于A、當(dāng)c=0時,ac2>bc2不成立,故A錯誤;
對于B、當(dāng)a=1,b=-2時,a2>b2不成立,故B錯誤;
對于C、當(dāng)a=1,b=-1時,$\frac{1}{a}$<$\frac{1}$不成立,故C錯誤;
對于D、若a>b,則有an>bn,n∈N,當(dāng)n=3時,即有a3>b3,故D正確;
故選:D.

點(diǎn)評 本題考查不等式的性質(zhì),關(guān)鍵是不等式成立的條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線$\left\{\begin{array}{l}{x=3+t}\\{y=2-2t}\end{array}\right.$(t為參數(shù))的斜率為( 。
A.2B.-2C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)是定義在R上的奇函數(shù),且f(1)=1,對于任意的x1,x2∈R(x1≠x2),都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$.
(1)解關(guān)于x的不等式f(x2-3ax)+f(2a2)<0;
(2)若f(x)≤m2-2am+1對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在數(shù)列{an}中,an=(-$\frac{1}{2}$)n,n∈N*,則$\underset{lim}{n→∞}$an( 。
A.等于$-\frac{1}{2}$B.等于0C.等于$\frac{1}{2}$D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,已知AB=AC=4,BC=2,∠B的平分線交AC于點(diǎn)D,則$\overrightarrow{AC}$•$\overrightarrow{BD}$的值為-$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.給出以下四個說法:
①繪制頻率分布直方圖時,各小長方形的面積等于相應(yīng)各組的組距;
②在刻畫回歸模型的擬合效果時,相關(guān)指數(shù)R2的值越大,說明擬合的效果越好;
③設(shè)隨機(jī)變量ξ服從正態(tài)分布N(4,22),則p(ξ>4)=$\frac{1}{2}$
④對分類變量X與Y,若它們的隨機(jī)變量K2的觀測值k越小,則判斷“X與Y有關(guān)系”的把握程度越大.
其中正確的說法是( 。
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列選項敘述錯誤的是( 。
A.命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1”
B.若命題p:?x∈R,x2+x+1≠0,則?p:?x∈R,x2+x+1=0
C.若p∨q為真命題,則p,q均為真命題
D.若命題q:?x∈R,x2+mx+1>0為真命題,則m的取值范圍為-2<m<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的前n項的和為Sn,且Sn+$\frac{1}{2}$an=1(n∈N*
(1)求{an}的通項公式;
(2)設(shè)bn=-log3(1-Sn),設(shè)Cn=$\frac{4_{n+1}}{{_{n}}^{2}•{^{2}}_{n+2}}$,求數(shù)列{Cn}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=4sinθ,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-2\sqrt{3}+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)).
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)求曲線C上的點(diǎn)到直線l的距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案