A. | (0,0) | B. | (0,1) | C. | $({\frac{1}{2},-\frac{1}{2}})$ | D. | $({-\frac{1}{2},-\frac{1}{2}})$ |
分析 由直線系的知識化方程為(x-y)a+2y+1=0,解方程組$\left\{\begin{array}{l}{x-y=0}\\{2y+1=0}\end{array}\right.$,可得答案.
解答 解:直線ax+(2-a)y+1=0可化為(x-y)a+2y+1=0,
由交點直線系可知上述直線過直線x-y=0和2y+1=0的交點,
解方程組$\left\{\begin{array}{l}{x-y=0}\\{2y+1=0}\end{array}\right.$可得$\left\{\begin{array}{l}{x=-\frac{1}{2}}\\{y=-\frac{1}{2}}\end{array}\right.$,
∴不論a為何實數(shù),直線ax+(2-a)y+1=0恒過定點(-$\frac{1}{2}$,-$\frac{1}{2}$)
故選:D.
點評 本題考查直線過定點,涉及方程組的解法,屬基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x0∈(0,+∞),lnx0=x0-1 | B. | ?x0∉(0,+∞),lnx0=x0-1 | ||
C. | ?x0∈(0,+∞),lnx0=x0-1 | D. | ?x0∉(0,+∞),lnx0=x0-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com