10.等差數(shù)列{an}中,a2+a5=4,S7=21,則a7等于( 。
A.6B.7C.8D.9

分析 由已知利用等差數(shù)列的通項公式和前n項和公式列出方程組,求出首項與公差,由此能求出a7

解答 解:∵等差數(shù)列{an}中,a2+a5=4,S7=21,
∴$\left\{\begin{array}{l}{{a}_{1}+d+{a}_{1}+4d=4}\\{7{a}_{1}+\frac{7×6}{2}d=21}\end{array}\right.$,
解得a1=-3,d=2,
∴a7=a1+6d=-3+12=9.
故選:D.

點評 本題考查等差數(shù)列的等7項的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,若$A=\frac{π}{3},tanB=\frac{1}{2},AB=2\sqrt{3}+1$,則BC=$\sqrt{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.不論a為何值,直線ax+(2-a)y+1=0恒過定點為(  )
A.(0,0)B.(0,1)C.$({\frac{1}{2},-\frac{1}{2}})$D.$({-\frac{1}{2},-\frac{1}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知|z|=1,則$|{z-1+\sqrt{3}i}|$的最大值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知樣本數(shù)為11,計算得$\sum_{i=1}^{11}{x_i}=66$,$\sum_{i=1}^{11}{y_i}=132$,回歸方程為y=0.3x+a,則a=10.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,它們的夾角為120°,求|$\overrightarrow{a}$-$\overrightarrow$|( 。
A.$\sqrt{19}$B.$\sqrt{13}$C.$\sqrt{10}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.“|x-1|<2成立”是x(3-x)>0“成立”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線2x-y-5=0且與圓x2+y2=5的位置關(guān)系是(  )
A..相切B..相離C.相交D.都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.拋物線C:y2=4x的準(zhǔn)線與x軸交于點A,焦點為點F,點P是拋物線C上的任意一點,令t=$\frac{|PA|}{|PF|}$,則t的最大值為( 。
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

同步練習(xí)冊答案