若角α和β的終邊關(guān)于y軸對稱,則α和β滿足
 
考點:終邊相同的角
專題:三角函數(shù)的求值
分析:根據(jù)角α與角β的終邊關(guān)于y軸對稱,即可確定α與β的關(guān)系.
解答: 解:∵π-α是與α關(guān)于y軸對稱的一個角,
∴β與π-α的終邊相同,
即β=2kπ+(π-α)
∴α+β=α+2kπ+(π-α)=(2k+1)π,
故答案為:α+β=(2k+1)π或α=-β+(2k+1)π,k∈Z;
點評:本題主要考查角的對稱之間的關(guān)系,根據(jù)終邊相同的關(guān)系是解決本題的關(guān)鍵,比較基礎.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a0=1,an=
n-1
i=0
ai
(n≥1),則當n≥1時,an=( 。
A、2n
B、
n(n+1)
2
C、2n-1
D、
n(n-1)
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四組中的f(x),g(x),表示同一個函數(shù)的是( 。
A、f(x)=1,g(x)=x0
B、f(x)=x-1,g(x)=
x2
x
-1
C、f(x)=x2,g(x)=(
x
4
D、f(x)=x3,g(x)=
3x9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax2+1,(x>0)
x-1,(x≤0)
,若f(1)=2.
(1)求實數(shù)a的值;
(2)若f(x)=3,求x的值;
(3)畫出函數(shù)的圖象說出函數(shù)f(x)的值域(不必寫出過程).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p>0,q>0,p,q的等差中項為
1
2
,且x=p+
1
q
,y=q+
1
p
,則x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的定義域:
(1)y=
x-2
x+5

(2)y=
x-4
|x|-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
 ①命題“?x∈R,x2+x+1>0的否定是:?x∈R,x2+x=1<0;
 ②命題“若ab=0,則a=0或b=0”的否命題是“若ab≠0,則a≠0且b≠0”;
 ③?x、y∈R,sin(x-y)=sinx-siny;
 ④向量
a
b
均是單位向量,其夾角為θ,則命題“p:|
a
-
b
|>1”是命題“q:θ∈[
π
2
,
6
]”的充要條件.其中正確的命題的個數(shù)是( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+1(a>0),若關(guān)于x的方程(f(x))2+tf(x)+2=0有兩個不等的實根,則實數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一元二次函數(shù)f(x)=ax2+bx+1(a,b∈R),x∈R,若函數(shù)f(x)的最小值為f(-1)=0,求f(x)的解析式并寫出單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案