7.如圖,將一個(gè)正方體的表面展開(kāi),直線AB與直線CD在原來(lái)正方體中的位置關(guān)系是( 。 
A.平行B.相交并垂直C.相交且成60°角D.異面

分析 將正方體還原后能求出結(jié)果.

解答 解:將正方體還原后如圖,
A與C重合,
連結(jié)BC,則△BDC是等邊三角形,
∴直線AB與直線CD在原來(lái)正方體中的位置關(guān)系是相交且成60°角.
故選:C.

點(diǎn)評(píng) 本題考查正方體中兩直線的位置關(guān)系的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.定義在R上的函數(shù)f(x),當(dāng)x>0時(shí),f(x)>1,且對(duì)任意的a、b∈R,有f(a+b)=f(a)•f(b).
(1)求證:f(0)=1;
(2)求證:對(duì)任意的x∈R,恒有f(x)>0;
(3)若f(x)•f(2x-x2)>1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=$\left\{\begin{array}{l}1,x為有理數(shù)\\ 0,x為無(wú)理數(shù)\end{array}$稱為狄利克雷函數(shù),關(guān)于函數(shù)f(x)有以下四個(gè)命題:
①f(f(x))=1;
②函數(shù)f(x)是偶函數(shù);
③任意一個(gè)非零有理數(shù)T,f(x+T)=f(x)對(duì)任意x∈R恒成立;
④存在三個(gè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中真命題的序號(hào)為①②③④.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列函數(shù)中,是奇函數(shù)且在區(qū)間(-∞,0)上為增函數(shù)的是( 。
A.f(x)=lgxB.y=x3C.y=x-1D.y=ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知a=$\frac{1}{2}$,b=${2^{\frac{1}{2}}}$,c=log32,則( 。
A.b>a>cB.c>b>aC.b>c>aD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x-1
(1)求f(x)的單調(diào)增區(qū)間和對(duì)稱中心坐標(biāo);
(2)將函數(shù)f(x)的圖象向右平移m個(gè)單位,使函數(shù)關(guān)于點(diǎn)($\frac{π}{3}$,0)對(duì)稱,求m的最小正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知點(diǎn)P(x,y)是圓x2+y2=2y上的動(dòng)點(diǎn),
(1)求z=2x+y的取值范圍; 
(2)若x+y+a≥0恒成立,求實(shí)數(shù)a的取值范圍.
(3)求x2+y2-16x+4y的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知A(1,-4),B(-5,4),則以AB為直徑的圓的標(biāo)準(zhǔn)方程是(x+2)2+y2=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知圓N經(jīng)過(guò)點(diǎn)A(3,1),B(-1,3),且它的圓心在直線3x-y-2=0上.
(Ⅰ)求圓N的方程;
(Ⅱ)求圓N關(guān)于直線x-y+3=0對(duì)稱的圓的方程.
(Ⅲ)若點(diǎn)D為圓N上任意一點(diǎn),且點(diǎn)C(3,0),求線段CD的中點(diǎn)M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案