分析 (1)令x=cosα,y=1+sinα,α∈[0,2π),由三角函數的性質能求出2x+y的范圍.
(2)由已知c≥-x-y恒成立,由-x-y=-sinα-cosα-1=-$\sqrt{2}$sin(α+$\frac{π}{4}$)-1,能求出c的范圍.
(3)x2+y2-16x+4y=cos2α+(1+sinα)2-16cosα+4(1+sinα),由此利用三角函數能求出x2+y2-16x+4y的最大值,最小值.
解答 解:(1)∵P是圓x2+y2-2y=0上的動點,∴P是圓x2+(y-1)2=1上的動點,
∴令x=cosα,y=1+sinα,α∈[0,2π),
∴2x+y=sinα+2cosα+1=$\sqrt{5}$sin(α+β)+1,
∴2x+y的范圍是[1-$\sqrt{5}$,1+$\sqrt{5}$].
(2)∵x+y+c≥0恒成立,∴c≥-x-y恒成立
∵-x-y=-sinα-cosα-1=-$\sqrt{2}$sin(α+$\frac{π}{4}$)-1
∴-x-y的最大值為$\sqrt{2}$-1,
∴c的范圍是[$\sqrt{2}$-1,+∞).
(3)x2+y2-16x+4y=cos2α+(1+sinα)2-16cosα+4(1+sinα)
=6sinα-16cosα+6=2$\sqrt{73}$sin(α+θ)+6,
∴x2+y2-16x+4y的最大值是6+2$\sqrt{73}$,最小值是6-2$\sqrt{73}$.
點評 本題主要考查了圓的參數方程,以及恒成立問題和正弦函數的值域問題,考查點到直線距離公式、等價轉化思想的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y2=8x | B. | y2=-8x | C. | y2=16x | D. | y2=-16x |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com