18.是否存在三角形滿足以下兩個性質(zhì):
(1)三邊是連續(xù)的三個自然數(shù);
(2)最大角是最小角的2倍.若存在,求出該三角形;若不存在,請說明理由.

分析 設(shè)三角形三邊是連續(xù)的三個自然n-1,n,n+1,三個角分別為α,π-3α,2α,由正弦定理求得cosα=$\frac{n+1}{2(n-1)}$,再由余弦定理可得 (n-1)2=(n+1)2+n2-2(n+1)n•$\frac{n+1}{2(n-1)}$,求得n=5,從而得出結(jié)論.

解答 解:設(shè)三角形三邊是連續(xù)的三個自然n-1,n,n+1,三個角分別為α,π-3α,2α,
由正弦定理可得 $\frac{n-1}{sinα}$=$\frac{n+1}{sin2α}$,
∴cosα=$\frac{n+1}{2(n-1)}$.
再由余弦定理可得 (n-1)2=(n+1)2+n2-2(n+1)n•cosα,即 (n-1)2=(n+1)2+n2-2(n+1)n•$\frac{n+1}{2(n-1)}$,
化簡可得n2-5n=0,∴n=5. 此時,三角形的三邊分別為:4,5,6,可以檢驗最大角是最小角的2倍.
綜上,存在一個三角形三邊長分別為 4,5,6,且最大角是最小角的2倍.

點評 本題考查正弦定理、余弦定理的應用,求得n2-5n=0,是解題的難點,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{1,x<0}\end{array}\right.$.則不等式f(x2)>f(3-2x)的解集為( 。
A.(-∞,-1)∪(1,+∞)B.(-∞,-3)∪(1,+∞)C.(-∞,-3)∪($\frac{1}{2}$,+∞)D.(-∞,-1)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設(shè)f(x)=2x3+ax2+bx+1在(1,f(1))處的切線方程為y=-6.
(1)求實數(shù)a,b的值;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知sin$θ=\frac{1}{3}$,θ是第二象限角,求cosθ•tanθ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.求函數(shù)f(x)=$\frac{1}{3}$x3-x2-8x+1(-6≤x≤6)的單調(diào)區(qū)間、極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在△ABC中,sinA;sinB:sinC=2:3:4,則cosA:cosB:cosC=(  )
A.2:3:4B.14:11:(-4)C.4:3:2D.7:11:(-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在平面直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(其中t為參數(shù)).以坐標原點O為極點,x軸正半軸為極軸建立極坐標系并取相同的單位長度,曲線C2的極坐標方程為$ρcos(θ+\frac{π}{4})=\frac{\sqrt{2}}{2}$.
(Ⅰ)把曲線C1的方程化為普通方程,C2的方程化為直角坐標方程;
(Ⅱ)若曲線C1,C2相交于A,B兩點,AB的中點為P,過點P做曲線C2的垂線交曲線C1于E,F(xiàn)兩點,求|PE|•|PF|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.把下列復數(shù)表示成代數(shù)形式.
(1)9(cosπ+isinπ);
(2)6(cos$\frac{4π}{3}$-isin$\frac{4π}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)F(x)=ex-1,G(x)=ax2+bx,其中a,b∈R,e是自然對數(shù)的底數(shù).
(1)當a=0時,y=G(x)為曲線y=F(x)的切線,求b的值;
(2)若f(x)=F(x)-G(x),f(1)=0,且函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案