分析 (Ⅰ)取PD中點M,連接EM,AM,推導出四邊形ABEM為平行四邊形,由此能證明BE∥平面ADP.
(Ⅱ)連接BM,推導出PD⊥EM,PD⊥AM,從而直線BE在平面PBD內的射影為直線BM,∠EBM為直線BE與平面PBD所成的角,由此能求出直線BE與平面PDB所成角的正弦值.
解答 證明:(Ⅰ)如圖,取PD中點M,連接EM,AM.
∵E,M分別為PC,PD的中點,∴EM∥DC,且EM=$\frac{1}{2}$DC,
又由已知,可得EM∥AB,且EM=AB,
∴四邊形ABEM為平行四邊形,∴BE∥AM.
∵AM?平面PAD,BE?平面PAD,
∴BE∥平面ADP.
解:(Ⅱ)連接BM,由(Ⅰ)有CD⊥平面PAD,得CD⊥PD,
而EM∥CD,∴PD⊥EM.
又∵AD=AP,M為PD的中點,∴PD⊥AM,
∴PD⊥BE,∴PD⊥平面BEM,
∴平面BEM⊥平面PBD.
∴直線BE在平面PBD內的射影為直線BM,
∵BE⊥EM,∴∠EBM為銳角,
∴∠EBM為直線BE與平面PBD所成的角.
依題意,有PD=2$\sqrt{2}$,而M為PD中點,
∴AM=$\sqrt{2}$,進而BE=$\sqrt{2}$.
∴在直角三角形BEM中,sin∠EBM=$\frac{EM}{BM}$=$\frac{1}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$.
∴直線BE與平面PDB所成角的正弦值為$\frac{\sqrt{3}}{3}$.
點評 本題考查線面平行的證明,考查線面角的正弦值的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數學 來源: 題型:選擇題
A. | 9+2$\sqrt{14}$ | B. | 4+2$\sqrt{6}$ | C. | 9+2$\sqrt{15}$ | D. | 5+2$\sqrt{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com