分析 (1)推導出BC⊥AC,CD⊥BC,DE∥BC,由此能證明DE⊥平面ACD.
(2)推導出DC=EB=1,三棱錐C-ABD的體積最大時,AC=BC=2$\sqrt{2}$,以C為原點,CA,CB,CD為x,y,z軸,建立空間直角坐標系,利用向量法能求出平面DAE與平面ABE夾角的余弦值.
解答 證明:(1)∵半圓O的直徑為AB,∴BC⊥AC,
∵CD⊥平面ABC,∴CD⊥BC,
∵CD∩AC=C,∴BC⊥平面ACD,
∵DC∥EB,DC=EB,∴BCDE是平行四邊形,∴DE∥BC,
∴DE⊥平面ACD.
解:(2)∵$sin∠{E}{A}{B}=\frac{{\sqrt{17}}}{17}$,∴$\frac{BE}{\sqrt{{4}^{2}+E{B}^{2}}}$=$\frac{\sqrt{17}}{17}$,
解得BE=1,∴CD=EB=1,
∵${V}_{C-ADE}={V}_{E-ACD}=\frac{1}{3}{S}_{△ACD}×DE$=$\frac{1}{3}×\frac{1}{2}×AC×CD$×DE
=$\frac{1}{6}×AC×BC$≤$\frac{1}{12}×(A{C}^{2}+B{C}^{2})$
=$\frac{1}{12}×A{B}^{2}$=$\frac{4}{3}$,
當且僅當AC=BC=2$\sqrt{2}$時,等號成立,
以C為原點,CA,CB,CD為x,y,z軸,建立空間直角坐標系,
則D(0,0,1),E(0,2$\sqrt{2}$,1),A(2$\sqrt{2}$,0,0),B(0,2$\sqrt{2}$,0),
∴$\overrightarrow{AB}$=(-2$\sqrt{2}$,2$\sqrt{2}$,0),$\overrightarrow{BE}$=(0,0,1),
$\overrightarrow{DA}$=(2$\sqrt{2}$,0,-1),$\overrightarrow{DE}$=(0,2$\sqrt{2}$,0),
設平面DAE的法向量$\overrightarrow{{n}_{1}}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{DE}=2\sqrt{2}y=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{DA}=2\sqrt{2}x-z=0}\end{array}\right.$,取x=1,得$\overrightarrow{{n}_{1}}=(1,0,2\sqrt{2})$,
設平面ABE的法向量為$\overrightarrow{{n}_{2}}$=(x1,y1,z1),
則$\left\{\begin{array}{l}{\overrightarrow{{n}_{2}}•\overrightarrow{BE}={{z}_{1}}^{\;}=0}\\{\overrightarrow{{n}_{2}}•\overrightarrow{AB}=-2\sqrt{2}{x}_{1}+2\sqrt{2}{y}_{1}=0}\end{array}\right.$,取x1=1,得$\overrightarrow{{n}_{2}}$=(1,1,0),
∴cos<$\overrightarrow{{n}_{1}},\overrightarrow{{n}_{2}}$>=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}|•|\overrightarrow{{n}_{2}}|}$=$\frac{1}{\sqrt{2}•\sqrt{9}}$=$\frac{\sqrt{2}}{6}$.
∴平面DAE與平面ABE夾角的余弦值為$\frac{\sqrt{2}}{6}$.
點評 本題考查線面垂直的證明,考查面面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
78 | 16 | 95 | 72 | 08 | 14 | 07 | 43 | 63 | 42 | 03 | 20 | 97 | 28 | 01 | 98 |
32 | 04 | 92 | 34 | 49 | 35 | 82 | 40 | 36 | 23 | 48 | 69 | 69 | 38 | 74 | 81 |
A. | 01 | B. | 07 | C. | 08 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com