【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過(guò)的包裹收費(fèi)10元;重量超過(guò)的包裹,除收費(fèi)10元之外,超過(guò)的部分,每超出(不足,按計(jì)算)需再收5元.該公司將最近承攬的100件包裹的重量統(tǒng)計(jì)如下:
公司對(duì)近60天,每天攬件數(shù)量統(tǒng)計(jì)如下表:
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計(jì)算該公司未來(lái)3天內(nèi)恰有2天攬件數(shù)在之間的概率;
(2)①估計(jì)該公司對(duì)每件包裹收取的快遞費(fèi)的平均值;
②公司將快遞費(fèi)的三分之一作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的用作其他費(fèi)用.目前前臺(tái)有工作人員3人,每人每天攬件不超過(guò)150件,工資100元.公司正在考慮是否將前臺(tái)工作人員裁減1人,試計(jì)算裁員前后公司每日利潤(rùn)的數(shù)學(xué)期望,并判斷裁員是否對(duì)提高公司利潤(rùn)更有利?
【答案】(1)(2)①15元②公司將前臺(tái)工作人員裁員1人對(duì)提高公司利潤(rùn)不利
【解析】【試題分析】(1)根據(jù)所給數(shù)據(jù)可知包裹件數(shù)在之間的天數(shù)為,由此計(jì)算出概率為.(2) ①利用總費(fèi)用除以,得到平均費(fèi)用為.②分別計(jì)算出兩種情況下公司平均每日利潤(rùn)的分布列及期望值,根據(jù)期望值可判斷公司將前臺(tái)工作人員裁員1人對(duì)提高公司利潤(rùn)不利.
【試題解析】
(1)樣本中包裹件數(shù)在之間的天數(shù)為48,頻率,
故可估計(jì)概率為,
顯然未來(lái)3天中,包裹件數(shù)在之間的天數(shù)服從二項(xiàng)分布,
即,故所求概率為;
(2)①樣本中快遞費(fèi)用及包裹件數(shù)如下表:
故樣本中每件快遞收取的費(fèi)用的平均值為(元),
故該公司對(duì)每件快遞收取的費(fèi)用的平均值可估計(jì)為15元.
②根據(jù)題意及(2)①,攬件數(shù)每增加1,可使前臺(tái)工資和公司利潤(rùn)增加(元),
將題目中的天數(shù)轉(zhuǎn)化為頻率,得
若不裁員,則每天可攬件的上限為450件,公司每日攬件數(shù)情況如下:
故公司平均每日利潤(rùn)的期望值為(元);
若裁員1人,則每天可攬件的上限為300件,公司每日攬件數(shù)情況如下:
故公司平均每日利潤(rùn)的期望值為(元)
因,故公司將前臺(tái)工作人員裁員1人對(duì)提高公司利潤(rùn)不利.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為進(jìn)一步貫徹落實(shí)“十九”大精神,某高校組織了“歌頌祖國(guó),緊跟黨走”為主題的黨史知識(shí)競(jìng)賽,從參加競(jìng)賽的學(xué)生中,隨機(jī)抽取40名學(xué)生,將其成績(jī)分為六段,,,得到如圖所示的頻率分布直方圖.
(1)求圖中的值;
(2)若從競(jìng)賽成績(jī)?cè)?/span>與兩個(gè)分?jǐn)?shù)段的學(xué)生中隨機(jī)選取兩名學(xué)生,設(shè)這兩名學(xué)生的競(jìng)賽成績(jī)之差的絕對(duì)值不大于分為事件,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+ex-e-x.
(1)判斷此函數(shù)的奇偶性,并說(shuō)明理由;
(2)判斷此函數(shù)的單調(diào)性(不需要證明);
(3)求不等式f(2x-1)+f(-3)<0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知時(shí),函數(shù)有極值
(1)求實(shí)數(shù)的值;
(2)若方程有3個(gè)實(shí)數(shù)根,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是函數(shù)的部分圖象.
(1)求函數(shù)的表達(dá)式;
(2)把函數(shù)的圖象的周期擴(kuò)大為原來(lái)的兩倍,然后向右平移個(gè)單位,再把縱坐標(biāo)伸長(zhǎng)為原來(lái)的兩倍,最后向上平移一個(gè)單位得到函數(shù)的圖象.若對(duì)任意的,方程在區(qū)間上至多有一個(gè)解,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿(mǎn)足.
(1)求A;
(2)若D為邊BC上一點(diǎn),且,b=6,AD=2,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.
(1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;
(2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對(duì)理科題的概率均為,答對(duì)文科題的概率均為,若每題答對(duì)得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com