【題目】已知等比數(shù)列{an}的前n項和為Sn,且滿足Sn2n12p(nN*).

(1)p的值及數(shù)列{an}的通項公式;

(2)若數(shù)列{bn}滿足(3p)anbn,求數(shù)列{bn}的前n項和Tn.

【答案】(1)p=-1,an2n(nN*).(2) .

【解析】試題分析:(1)根據(jù)和項與通項關系得當n2anSnSn12n.根據(jù)n=1時也滿足,得p的值及數(shù)列{an}的通項公式(2)由已知得bn,再根據(jù)錯位相減法求數(shù)列{bn}的前n項和Tn.

試題解析:(1)Sn2n12p(nN*)

a1S142p,

n2時,anSnSn12n.

由于{an}是等比數(shù)列,

a142p2,則p=-1,

因此an2n(nN*).

(2)(3p)anbn2anbn,得2n22nbn

bn.

Tn,

Tn,

②得Tn

Tn1

2,

因此Tn2.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為的菱形, , 平面, , 是棱上的一個點, , 的中點.

(1)證明: 平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側棱平面, 為等腰直角三角形, ,且, 分別是的中點.

(1)若的中點,求證: 平面;

(2)若是線段上的任意一點,求直線與平面所成角正弦的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù),其中.

(1)試討論函數(shù)的單調性;

(2)已知當 (其中是自然對數(shù)的底數(shù))時,在上至少存在一點,使成立,求的取值范圍;

(3)求證:當時,對任意,有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線與雙曲線的漸近線交于兩點,設為雙曲線上任一點,若為坐標原點),則下列不等式恒成立的是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l ,曲線C

(1)m3時,判斷直線l與曲線C的位置關系;

(2)若曲線C上存在到直線l的距離等于的點,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為, 直線過點.

(Ⅰ)若點到直線的距離為, 求直線的斜率;

(Ⅱ)為拋物線上兩點, 不與軸垂直, 若線段的垂直平分線恰過點, 求證: 線段中點的橫坐標為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的對稱中心為原點O,焦點在x軸上,左,右焦點分別為F1,F2,上頂點和右頂點分別為B,A,線段AB的中點為D,且,AOB的面積為.

(1)求橢圓C的方程;

(2)F1的直線l與橢圓C相交于MN兩點,若△MF2N的面積為,求以F2為圓心且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐A-BCDE中,側棱AD⊥底面BCDE,底面BCDE是直角梯形,DE∥BC,BC⊥CD,BC=2AD=2DC=2DE=4,H,I分別是AD,AE的中點.

(Ⅰ)在AB上求作一點F,BC上求作一點G,使得平面FGI∥平面ACD;

(Ⅱ)求平面CHI將四棱錐A-BCDE分成的兩部分的體積比.

查看答案和解析>>

同步練習冊答案