一個(gè)三次函數(shù)y=f(x),當(dāng)x=3時(shí)取得極小值y=0,又在此函數(shù)的曲線上點(diǎn)(1,8)處的切線經(jīng)過點(diǎn)(3,0),求函數(shù)f(x)的表達(dá)式.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:設(shè)f(x)=ax3+bx2+cx+d(a≠0),求出導(dǎo)數(shù),由題意可得f(3)=0,f′(3)=0,f(1)=8,f′(1)=
8-0
1-3
=-4,列出a,b,c,d的四個(gè)方程,通過消元,解方程,即可得到f(x)的解析式,注意檢驗(yàn)極值.
解答: 解:設(shè)f(x)=ax3+bx2+cx+d(a≠0),
則f′(x)=3ax2+2bx+c,
當(dāng)x=3時(shí)取得極小值y=0,
則有f(3)=0,即27a+9b+3c+d=0①
f′(3)=0,即有27a+6b+c=0②
在此函數(shù)的曲線上點(diǎn)(1,8)處的切線經(jīng)過點(diǎn)(3,0),
則有f(1)=8,即a+b+c+d=8③
f′(1)=
8-0
1-3
=-4,即3a+2b+c=-4④
①-③可得,13a+4b+c=-4,⑤
②-④,得6a+b=1,
④-⑤得,b=-5a,
綜上,解得a=1,b=-5,c=3,d=9.
則f(x)=x3-5x2+3x+9.
由于f′(x)=3x2-10x+3,
當(dāng)x>3或x<
1
3
時(shí),f′(x)>0,f(x)遞增,
當(dāng)
1
3
<x<3時(shí),f′(x)<0,f(x)遞減.
則當(dāng)x=3時(shí)取得極小值.
故有f(x)=x3-5x2+3x+9.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的運(yùn)用:求切線方程和求單調(diào)區(qū)間和極值,主要考查解方程的化簡(jiǎn)運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sinωxcosωx-cos2ωx-
1
2
(ω>0,x∈R)的圖象上相鄰兩個(gè)最高點(diǎn)的距離為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若△ABC三個(gè)內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且c=
7
,f(C)=0,sinB=3sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3sin2x+2
3
sinxcosx+cos2x(x∈R).
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)減區(qū)間;
(Ⅱ)若f(x0)=2,x0∈[0,
π
2
],求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,且2Tn=4Sn-(n2+n),n∈N*
(Ⅰ)證明:數(shù)列{an+1}為等比數(shù)列;
(Ⅱ)設(shè)bn=
n+1
an+1
,證明:b1+b2+…+bn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩所學(xué)校高二年級(jí)分別有1200人,1000人,為了了解兩所學(xué)校全體高二年級(jí)學(xué)生在該地區(qū)四校聯(lián)考的數(shù)學(xué)成績(jī)情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)34815
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)15x32
乙校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1289
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y3
(Ⅰ)計(jì)算x,y的值;
(Ⅱ)若規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀,請(qǐng)分別估計(jì)兩所學(xué)校數(shù)學(xué)成績(jī)的優(yōu)秀率;
(Ⅲ)若規(guī)定考試成績(jī)?cè)赱140,150]內(nèi)為特優(yōu),甲、乙兩所學(xué)校從抽取的5張?zhí)貎?yōu)試卷中隨機(jī)抽取兩張進(jìn)行張貼表?yè)P(yáng),求這兩張?jiān)嚲韥?lái)自不同學(xué)校的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線為y=
3
x,有焦點(diǎn)F到直線x=
a2
c
的距離為
3
2

(1)求雙曲線C的方程;
(2)斜率為1且在y軸上的截距大于0的直線與曲線C相較于B,D兩點(diǎn),已知A(1,0),若
DF
BF
=1,證明:過A.B.D三點(diǎn)的圓與x軸相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|2x-1|,則g(x)=f(f(x))+lnx在區(qū)間(0,1)上的零點(diǎn)的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市電視臺(tái)在因特網(wǎng)上征集電視節(jié)目的現(xiàn)場(chǎng)參與觀眾,報(bào)名的共有12000人,分別來(lái)自4個(gè)城區(qū),其中東城區(qū)2400人,西城區(qū)4605人,西城區(qū)3795人,北城區(qū)1200人,用分層抽樣的方式從中抽取60人參加現(xiàn)場(chǎng)節(jié)目,應(yīng)當(dāng)如何抽取?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三棱柱ABC-A1B1C1的棱長(zhǎng)均為a,D、E分別為C1C與AB的中點(diǎn),A1B交AB1于點(diǎn)G.
(1)求證:A1B⊥AD;
(2)求證:CE∥平面AB1D.

查看答案和解析>>

同步練習(xí)冊(cè)答案