函數(shù)y=2sin(2x-
π
4
)的一條對(duì)稱軸是( 。
A、x=
π
2
B、x=
π
4
C、x=-
π
8
D、x=
π
8
考點(diǎn):正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:令2x-
π
4
=kπ+
π
2
,求得x的解析式,可得函數(shù)的圖象的對(duì)稱軸方程,從而得出結(jié)論.
解答: 解:對(duì)于函數(shù)y=2sin(2x-
π
4
),令2x-
π
4
=kπ+
π
2
,求得 x=
2
+
8
,k∈z,
可得函數(shù)y=2sin(2x-
π
4
)的一條對(duì)稱軸是 x=-
π
8

故選:C.
點(diǎn)評(píng):本題主要考查正弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線過(guò)點(diǎn)(1,0),(4,
3
),則此直線的傾斜角是( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}是等比數(shù)列,則下列結(jié)論中正確的是( 。
A、對(duì)任意k∈N*,都有akak+1>0
B、對(duì)任意k∈N*,都有akak+1ak+2>0
C、對(duì)任意k∈N*,都有akak+2>0
D、對(duì)任意k∈N*,都有akak+2ak+4>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程f(x)=x的根稱為函數(shù)f(x)的不動(dòng)點(diǎn),若函數(shù)f(x)=
x
a(x+2)
有唯一不動(dòng)點(diǎn),且x1=1000,xn+1=
1
f(
1
xn
)
,n為正整數(shù),則x2011=(  )
A、2005B、2006
C、2007D、2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論正確的有( 。
①集合A={1,2},集合B={x|x是4的因數(shù)},A與B是同一個(gè)集合;
②集合{y|y=2x2-3}與集合{(x,y)|y=2x2-3}是同一個(gè)集合;
③由1,
3
2
,
6
4
,|-
1
2
|,0.5這些數(shù)組成的集合有5個(gè)元素;
④集合{(x,y)|xy≤0,x、y∈R}是指第二和第四象限內(nèi)的點(diǎn)集.
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行六面體ABCD-A1B1C1D1中,底面是邊長(zhǎng)為1的正方形,若∠A1AB=∠A1AD=60°,且A1A=3,則A1C的長(zhǎng)為( 。
A、
5
B、2
2
C、
14
D、
17

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點(diǎn)F(-c,0)作圓(x-c)2+y2=c2的切線,切點(diǎn)為E,且該切線與雙曲線的右支交于點(diǎn)A.若
OE
=
1
2
OF
+
OA
),則該雙曲線的離心率為( 。
A、
3
+1
2
B、
3
C、
3
+1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

20名學(xué)生,任意分成甲、乙兩組,每組10人,其中2名學(xué)生干部恰好被分在不同組內(nèi)的概率是(  )
A、
C
1
2
C
9
18
C
10
20
B、
2
C
1
2
C
8
18
C
10
20
C、
2
C
1
2
C
8
19
C
10
20
D、
C
1
2
C
8
18
C
10
20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(sinx,
3
sinx),
n
=(sinx,-cosx),設(shè)函數(shù)f(x)=
m
n
,
(Ⅰ)求函數(shù)f(x)的表達(dá)式及它的值域;   
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,A為銳角,若f(A)+
1
2
+sin(2A-
π
6
)=
3
2
,b+c=7,△ABC的面積為2
3
,求邊a的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案