A. | $[0,\frac{4}{27}]$ | B. | $[0,\frac{3}{8}]$ | C. | [-$\frac{9}{8}$,$\frac{4}{27}$] | D. | $[-\frac{9}{8},\frac{3}{8}]$ |
分析 由求導(dǎo)公式和法則求出f′(x),由導(dǎo)數(shù)的幾何意義和切線方程列出方程,聯(lián)立后求出a、b的值,求出f(x)、f′(x),由導(dǎo)數(shù)的符號(hào)求出函數(shù)的單調(diào)區(qū)間、極值,結(jié)合端點(diǎn)處的函數(shù)值求出函數(shù)的值域.
解答 解:由題意得,f′(x)=3ax2-2bx,
∵在點(diǎn)(1,f(1))處的切線方程為y=-x+1,
∴f′(1)=3a-2b=-1,且f(1)=a-b=0,解得a=b=-1,
∴f(x)=-x3+x2,f′(x)=-3x2+2x=x(-3x+2),
由f′(x)=0得,x=0或x=$\frac{2}{3}$,
∴當(dāng)x∈(-$\frac{1}{2}$,0),($\frac{2}{3}$,$\frac{3}{2}$)時(shí),f′(x)<0,則f(x)在(-$\frac{1}{2}$,0),($\frac{2}{3}$,$\frac{3}{2}$)上是減函數(shù),
當(dāng)x∈(0,$\frac{2}{3}$)時(shí),f′(x)>0,則f(x)在(0,$\frac{2}{3}$)上是增函數(shù),
∴函數(shù)的極小值是f(0)=0,極大值是f($\frac{2}{3}$)=$\frac{4}{27}$,
∵f($-\frac{1}{2}$)=$\frac{3}{8}$,f($\frac{3}{2}$)=$-\frac{9}{8}$,
∴函數(shù)的最大值是$\frac{3}{8}$,最小值是$-\frac{9}{8}$,即值域是$[-\frac{9}{8},\frac{3}{8}]$,
故選D.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(0,\sqrt{6})$ | B. | $(1,\sqrt{6})$ | C. | $(\sqrt{3},\sqrt{6})$ | D. | $(\sqrt{3},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<c | B. | c<b<a | C. | b<c<a | D. | a<b<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com