18.函數(shù)y=-xcosx的部分圖象是( 。
A.B.
C.D.

分析 由函數(shù)奇偶性的性質(zhì)排除A,C,然后根據(jù)當(dāng)x取無窮小的正數(shù)時,函數(shù)小于0得答案.

解答 解:函數(shù)y=-xcosx為奇函數(shù),故排除A,C,
又當(dāng)x取無窮小的正數(shù)時,-x<0,cosx→1,則-xcosx<0,
故選:D.

點評 本題考查利用函數(shù)的性質(zhì)判斷函數(shù)的圖象,訓(xùn)練了常用選擇題的求解方法:排除法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.鈍角三角形ABC的面積是$\frac{{\sqrt{3}}}{2}$,AB=1,BC=2,則AC=(  )
A.3B.7C.$\sqrt{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知點A(-1,0)和B(1,0).若直線 y=-2x+b與線段AB相交,則b的取值范圍是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x,x<1}\\{2x-1,1≤x<10}\\{{3}^{x}-11,x≥10}\end{array}\right.$試設(shè)計算法及程序框圖,并寫出程序.要求輸入自變量x,輸出函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.?dāng)?shù)列{an}是首項為1,公差為3的等差數(shù)列,如果an=2 014,則序號n=672.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^3}-3x-1\\ 1\end{array}\right.\begin{array}{l}{(x≥1)}\\{(x<1)}\end{array}$,則滿足不等式f(2x2)<f(1-x)的x的取值范圍是{x|$\frac{\sqrt{2}}{2}$≤x<1 或x<-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow a$,$\overrightarrow b$的夾角為60°,且|${\overrightarrow a}$|=1,|2$\overrightarrow a$-$\overrightarrow b}$|=$\sqrt{3}$,則|${\overrightarrow b}$|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知i是虛數(shù)單位,且z=$\frac{{{i^{2014}}}}{{1-{i^{2015}}}}$,且z的共軛復(fù)數(shù)為$\overline{z}$,則$\overline{z}$||=( 。
A.0B.1C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{m}{x}$-m+lnx(m為常數(shù)).
(1)試求f(x)的單調(diào)區(qū)間;
(2)當(dāng)m為何值時,f(x)≥0恒成立?

查看答案和解析>>

同步練習(xí)冊答案