分析 (1)對f(x)求導(dǎo),對導(dǎo)函數(shù)中m進(jìn)行分類討論,由此得到單調(diào)區(qū)間,
(2)借助(1),對m進(jìn)行分類討論,由最大值小于等于0,構(gòu)造新函數(shù),轉(zhuǎn)化為最值問題.
解答 解:(1)${f}^{′}(x)=\frac{1}{x}-\frac{m}{{x}^{2}}$ (x∈(0,+∞)),
當(dāng)m≤0時,f′(x)>0恒成立,則函數(shù)f(x)在(0,+∞)上單調(diào)遞增
此時函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,+∞),無單調(diào)遞減區(qū)間;
當(dāng)m>0時,令f′(x)>0,解得:x>m,令f′(x)<0,解得:0<x<m,
∴f(x)在(0,m)遞減,在(m,+∞)遞增;
(2)由(1)得:m≤0時,f(x)在(0,+∞)遞增,
而f(1)=0,故f(x)<0在(0,1)成立,不合題意,
m>0時,f(x)在(0,m)遞減,在(m,+∞)遞增,
f(x)min=f(m)=1-m+lnm=0,解得:m=1.
點(diǎn)評 本題考查函數(shù)求導(dǎo),分類討論,構(gòu)造新函數(shù),將不等式轉(zhuǎn)化為最值問題,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{8}{3}$,$\frac{28}{5}$) | B. | ($\frac{8}{3}$,$\frac{28}{5}$] | C. | ($\frac{8}{3}$,$\frac{18}{5}$) | D. | ($\frac{8}{3}$,$\frac{18}{5}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12m3 | B. | $\frac{8}{3}{m^3}$ | C. | 4m3 | D. | 8m3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m≤1 | B. | 0<m≤1 | C. | 0≤m≤1 | D. | m≥1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com