【題目】調(diào)查某校高三年級男生的身高,隨機抽取40名高三男生,實測身高數(shù)據(jù)(單位:cm)如下:

171

163

163

166

166

168

168

160

168

165

171

169

167

169

151

168

170

168

160

174

165

168

174

159

167

156

157

164

169

180

176

157

162

161

158

164

163

163

167

161

1)作出頻率分布表;

2)畫出頻率分布直方圖.

【答案】1)分布表見解析 2)直方圖見解析

【解析】

1)根據(jù)所給數(shù)據(jù),可得身高的極差,確定分組后,即可得頻率分布表.

2)根據(jù)頻率分布表,可畫出頻率分布直方圖.

1)最低身高151 cm,最高身高180 cm,它們的差是,即極差為29.確定組距為4,組數(shù)為8,頻率分布表如下:

分組

頻數(shù)

頻率

1

0.025

3

0.075

6

0.15

9

0.225

14

0.35

3

0.075

3

0.075

1

0.025

合計

40

1

2)組距為4,結(jié)合頻率分布表,可計算各組的,即可得頻率分布直方圖如下圖所示.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2名女生、4名男生排成一排,求:

12名女生不相鄰的不同排法共有多少種?

2)女生甲必須排在女生乙的左邊(不一定相鄰)的不同排法共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家質(zhì)量監(jiān)督檢驗檢疫局于2004年5月31日發(fā)布了新的《車輛駕駛?cè)藛T血液、呼吸酒精含量閥值與檢驗》國家標準,新標準規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫克升為飲酒駕車,血液中的酒精含量大于或等于80毫克/百毫升為醉酒駕車,經(jīng)過反復(fù)試驗,喝1瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點圖”如下:

該函數(shù)模型如下:

根據(jù)上述條件,回答以下問題:

(1)試計算喝1瓶啤酒后多少小時血液中的酒精含量達到最大值?最大值是多少?

(2)試計算喝1瓶啤酒后多少小時后才可以駕車?(時間以整小時計算)

(參數(shù)數(shù)據(jù): ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

在平面直角坐標系xOy中,點B與點A-1,1)關(guān)于原點O對稱,P是動點,且直線APBP的斜率之積等于.

(Ⅰ)求動點P的軌跡方程;

(Ⅱ)設(shè)直線APBP分別與直線x=3交于點M,N,問:是否存在點P使得△PAB△PMN的面積相等?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小組6個人排隊照相留念.

1)若分成一排照相,有多少種不同的排法?

2)若排成一排照相,甲、乙兩人必須在一起,有多少種不同的排法?

3)若排成一排照相,其中甲必在乙的右邊,有多少種不同的排法?

4)若排成一排照相,其中有3名男生3名女生,且男生不能相鄰有多少種排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的離心率為,以橢圓的左頂點為圓心作圓,設(shè)圓與橢圓交于點與點

1)求橢圓的方程;

2)求的最小值,并求此時圓的方程;

3)設(shè)點是橢圓上異于,的任意一點,且直線分別與軸交于點為坐標原點,

求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場為了了解某日旅游鞋的銷售情況,抽取了部分顧客所購鞋的尺寸,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖如圖所示.已知從左到右前3個小組的頻率之比為123,第4小組與第5小組的頻率分布如圖所示,第2小組的頻數(shù)為10,則第4小組顧客的人數(shù)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.

(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某射手在一次射擊訓(xùn)練中,射中10環(huán),9環(huán),8環(huán)、7環(huán)的概率分別是0.21,0.23,0.250.28,計算這個射手在一次射擊中:

1)射中10環(huán)或7環(huán)的概率; (2)不夠7環(huán)的概率.

查看答案和解析>>

同步練習(xí)冊答案