若a>0,b>0,且+=.
(1) 求a3+b3的最小值;
(2)是否存在a,b,使得2a+3b=6?并說(shuō)明理由.
解:(1)由=+≥,得ab≥2,
且當(dāng)a=b=時(shí)等號(hào)成立.
故a3+b3≥2≥4,
且當(dāng)a=b=時(shí)等號(hào)成立.
所以a3+b3的最小值為4.
(2)不存在滿(mǎn)足題意的a,b,
理由:由(1)知,2a+3b≥2≥4.
由于4>6,從而不存在a,b,使得2a+3b=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
定義:若z2=a+bi(a,b∈R,i為虛數(shù)單位),則稱(chēng)復(fù)數(shù)z是復(fù)數(shù)a+bi的平方根.根據(jù)定義,復(fù)數(shù)-3+4i的平方根是( )
A.1-2i或-1+2i
B.1+2i或-1-2i
C.-7-24i
D.7+24i
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
函數(shù)f(x)=sin(x+)-cos(x+),x∈[0,2π]的單調(diào)遞減區(qū)間是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
對(duì)任意x,y∈R,|x-1|+|x|+|y-1|+|y+1|的最小值為( )
(A)1 (B)2 (C)3 (D)4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=|x-a|,其中a>1.
(1)當(dāng)a=2時(shí),求不等式f(x)≥4-|x-4|的解集;
(2)已知關(guān)于x的不等式|f(2x+a)-2f(x)|≤2的解集為{x|1≤x≤2},求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
給出下列各組向量:①e1=(-1,2),e2=(5,7);②e1=(3,5),e2=(6,10);③e1=(2,-3),e2=(,-).其中能作為表示它們所在平面內(nèi)所有向量的基底的是( )
A.① B.①③ C.②③ D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)一切正整數(shù)n,點(diǎn)Pn(n,Sn)都在偶函數(shù)f(x)=x2+bx的圖像上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2n+an,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com