【題目】如圖,斜三棱柱ABC﹣A1B1C1的底面是直角三角形,∠ACB=90°,點(diǎn)B1在底面內(nèi)的射影恰好是BC的中點(diǎn),且BC=CA=2.
(1)求證:平面ACC1A1⊥平面B1C1CB;
(2)若二面角B﹣AB1﹣C1的余弦值為 ,求斜三棱柱ABC﹣A1B1C1的側(cè)棱AA1的長(zhǎng)度.
【答案】
(1)解:取BC中點(diǎn)M,連接B1M,則B1M⊥面ABC,
∴面BB1C1C⊥面ABC,
∵BC=面BB1C1C∩面ABC,AC⊥BC,
∴AC⊥面BB1C1C,
∵AC面ACC1A1∴面ACC1A1⊥面BCC1B1
(2)解:取BC的中點(diǎn)為M,AB的中點(diǎn)M,連接OM,MB1,
以MC為x軸,MO為y軸,MB1為z軸,建立空間直角坐標(biāo)系.AC=BC=2,AB=2 ,設(shè)B1M=t,則A(1,2,0),B(﹣1,0,0),C(1,0,0),B1(0,0,t),C1(2,0,t),
則 =(﹣1,﹣2,t), =(﹣2,﹣2,0), =(2,0,0),
設(shè)平面AB1C1法向量 ,
∴ ,即 ,取 = .
同理可得面AB1B法向量 =(1,﹣1,﹣ ).
∵ = = ,
t4+29t2﹣96=0,
∴t= ,
∴BB1=2.
【解析】(1)利用線面垂直的性質(zhì)定理證明面面垂直(2)建立空間直角坐標(biāo)系,寫(xiě)出對(duì)應(yīng)點(diǎn)的坐標(biāo),利用余弦值求得邊長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:設(shè)一正方形紙片ABCD邊長(zhǎng)為2分米,切去陰影部分所示的四個(gè)全等的等腰三角形,剩余為一個(gè)正方形和四個(gè)全等的等腰三角形,沿虛線折起,恰好能做成一個(gè)正四棱錐(粘接損耗不計(jì)),圖中,O為正四棱錐底面中心.
(Ⅰ)若正四棱錐的棱長(zhǎng)都相等,求這個(gè)正四棱錐的體積V;
(Ⅱ)設(shè)等腰三角形APQ的底角為x,試把正四棱錐的側(cè)面積S表示為x的函數(shù),并求S的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)且斜率為的直線與橢圓有兩個(gè)不同的交點(diǎn)和.
(1)求的取值范圍;
(2)設(shè)橢圓與軸正半軸、軸正半軸的交點(diǎn)分別為,是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方體ABCD—A1B1C1D1中,試在DD1確定一點(diǎn)P,使得直線BD1∥平面PAC,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓與軸負(fù)半軸相交于點(diǎn),與軸正半軸相交于點(diǎn).
(1)若過(guò)點(diǎn)的直線被圓截得的弦長(zhǎng)為,求直線的方程;
(2)若在以為圓心半徑為的圓上存在點(diǎn),使得 (為坐標(biāo)原點(diǎn)),求的取值范圍;
(3)設(shè)是圓上的兩個(gè)動(dòng)點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為,點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,如果直線與軸分別交于和,問(wèn)是否為定值?若是求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)的右焦點(diǎn)為F,上頂點(diǎn)為A,短軸長(zhǎng)為2,O為原點(diǎn),直線AF與橢圓C的另一個(gè)交點(diǎn)為B,且△AOF的面積是△BOF的面積的3倍.
(1)求橢圓C的方程;
(2)如圖,直線l:y=kx+m與橢圓C相交于P,Q兩點(diǎn),若在橢圓C上存在點(diǎn)R,使OPRQ為平行四邊形,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】教育學(xué)家分析發(fā)現(xiàn)加強(qiáng)語(yǔ)文樂(lè)隊(duì)理解訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān),某校興趣小組為了驗(yàn)證這個(gè)結(jié)論,從該校選擇甲乙兩個(gè)同軌班級(jí)進(jìn)行試驗(yàn),其中甲班加強(qiáng)閱讀理解訓(xùn)練,乙班常規(guī)教學(xué)無(wú)額外訓(xùn)練,一段時(shí)間后進(jìn)行數(shù)學(xué)應(yīng)用題測(cè)試,統(tǒng)計(jì)數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)
(1)經(jīng)過(guò)多次測(cè)試后,小明正確解答一道數(shù)學(xué)應(yīng)用題所用的時(shí)
間在5—7分鐘,小剛正確解得一道數(shù)學(xué)應(yīng)用題所用的時(shí)間在6—8
分鐘,現(xiàn)小明.小剛同時(shí)獨(dú)立解答同一道數(shù)學(xué)應(yīng)用題,求小剛比
小明先正確解答完的概率;
(2)現(xiàn)從乙班成績(jī)優(yōu)秀的8名同學(xué)中任意抽取兩人,并對(duì)他們的答題情況進(jìn)行全程研究,記A.B兩人中被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】全國(guó)大學(xué)生機(jī)器人大賽是由共青團(tuán)中央,全國(guó)學(xué)聯(lián),深圳市人民政府聯(lián)合主辦的賽事,是中國(guó)最具影響力的機(jī)器人項(xiàng)目,是全球獨(dú)創(chuàng)的機(jī)器人競(jìng)技平臺(tái).全國(guó)大學(xué)生機(jī)器人大賽比拼的是參賽選手們的能力,堅(jiān)持和態(tài)度,展現(xiàn)的是個(gè)人實(shí)力以及整個(gè)團(tuán)隊(duì)的力量.2015賽季共吸引全國(guó)240余支機(jī)器人戰(zhàn)隊(duì)踴躍報(bào)名,這些參賽戰(zhàn)隊(duì)來(lái)自全國(guó)六大賽區(qū),150余所高等院校,其中不乏北京大學(xué),清華大學(xué),上海交大,中國(guó)科大,西安交大等眾多國(guó)內(nèi)頂尖高校,經(jīng)過(guò)嚴(yán)格篩選,最終由111支機(jī)器人戰(zhàn)隊(duì)參與到2015年全國(guó)大學(xué)生機(jī)器人大賽的激烈角逐之中,某大學(xué)共有“機(jī)器人”興趣團(tuán)隊(duì)1000個(gè),大一、大二、大三、大四分別有100,200,300,400個(gè),為挑選優(yōu)秀團(tuán)隊(duì),現(xiàn)用分層抽樣的方法,從以上團(tuán)隊(duì)中抽取20個(gè)團(tuán)隊(duì).
(1)應(yīng)從大三抽取多少個(gè)團(tuán)隊(duì)?
(2)將20個(gè)團(tuán)隊(duì)分為甲、乙兩組,每組10個(gè)團(tuán)隊(duì),進(jìn)行理論和實(shí)踐操作考試(共150分),甲、乙兩組的分?jǐn)?shù)如下:
甲:125,141,140,137,122,114,119,139,121,142
乙:127,116,144,127,144,116,140,140,116,140
從甲、乙兩組中選一組強(qiáng)化訓(xùn)練,備戰(zhàn)機(jī)器人大賽.從統(tǒng)計(jì)學(xué)數(shù)據(jù)看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一直一艘船由島以海里/小時(shí)的速度往北偏東的島形式,計(jì)劃到達(dá)島后停留分鐘后繼續(xù)以相同的速度駛往島.島在島的北偏西的方向上,島也也在島的北偏西的方向上.上午時(shí)整,該船從島出發(fā).上午時(shí)分,該船到達(dá)處,此時(shí)測(cè)得島在北偏西的方向上.如果一切正常,此船何時(shí)能到達(dá)島?(精確到分鐘)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com