【題目】某賽季,甲、乙兩名籃球運(yùn)動(dòng)員都參加了7場(chǎng)比賽,他們所有比賽得分的情況用如圖所示的莖葉圖表示.
(1)求甲、乙兩名運(yùn)動(dòng)員得分的中位數(shù);
(2)你認(rèn)為哪位運(yùn)動(dòng)員的成績(jī)更穩(wěn)定?
(3)如果從甲、乙兩位運(yùn)動(dòng)員的7場(chǎng)得分中各隨機(jī)抽取一場(chǎng)的得分,求甲的得分大于乙的得分的概率.
【答案】(1)甲運(yùn)動(dòng)員得分的中位數(shù)為22,乙運(yùn)動(dòng)員得分的中位數(shù)為23.;(2)甲運(yùn)動(dòng)員的成績(jī)更穩(wěn)定;
(3)
【解析】試題分析:(1)由莖葉圖中莖表示十位數(shù),葉表示個(gè)數(shù)數(shù),我們可以列出甲、乙兩名籃球運(yùn)動(dòng)員各場(chǎng)的得分,進(jìn)而求出甲、乙兩名運(yùn)動(dòng)員得分的中位數(shù);(2)由表中數(shù)據(jù),我們易計(jì)算出甲、乙兩名籃球運(yùn)動(dòng)員各場(chǎng)的得分的方差,,然后比較,根據(jù)誰(shuí)的方差小誰(shuí)的成績(jī)穩(wěn)定的原則進(jìn)行判斷;(3)我們計(jì)算出從甲、乙兩位運(yùn)動(dòng)員的7場(chǎng)得分中各隨機(jī)抽取一場(chǎng)的得分的基本事件總數(shù),然后再計(jì)算出其中甲的得分大于乙的基本事件個(gè)數(shù),代入古典概率計(jì)算公式,即可求解.
試題解析:(1)甲運(yùn)動(dòng)員得分的中位數(shù)為22,乙運(yùn)動(dòng)員得分的中位數(shù)為23.
(2),
,
,
,
∴,從而甲運(yùn)動(dòng)員的成績(jī)更穩(wěn)定.
(3)從甲、乙兩位運(yùn)動(dòng)員的7場(chǎng)得分中各隨機(jī)抽取一場(chǎng)的得分的基本事件總數(shù)為,其中甲的得分大于乙的是:甲得14分有3場(chǎng),甲15分有3場(chǎng),甲得17分有3場(chǎng),甲得22分有3場(chǎng),甲得23分有3場(chǎng),甲得24分有4場(chǎng),甲得32分有7場(chǎng),共計(jì)26場(chǎng).
因?yàn),甲的得分大于乙的得分的概?/span>.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個(gè)圓.
(1)求實(shí)數(shù)m的取值范圍;
(2)求該圓的半徑r的取值范圍;
(3)求圓心C的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)= 的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍為( )
A.(0,1)
B.[0,1]
C.(0,1]
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】海島B上有一座高為10米的塔,塔頂?shù)囊粋(gè)觀測(cè)站A,上午11時(shí)測(cè)得一游船位于島北偏東15°方向上,且俯角為30°的C處,一分鐘后測(cè)得該游船位于島北偏西75°方向上,且俯角45°的D處(假設(shè)游船勻速行駛).
(1)求該船行駛的速度(單位:米/分鐘).
(2)又經(jīng)過(guò)一段時(shí)間后,游船到達(dá)海島B的正西方向E處,問(wèn)此時(shí)游船距離海島B多遠(yuǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,函數(shù)y=f(x)的圖像為折線ABC,設(shè)g (x)=f[f(x)],則函數(shù)y=g(x)的圖像為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) ,區(qū)間M=[a,b](其中a<b)集合N={y|y=f(x),x∈M},則使M=N成立的實(shí)數(shù)對(duì)(a,b)有個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=log2 log4 + (2≤x≤2m , m>1,m∈R)
(1)求x=4 時(shí)對(duì)應(yīng)的y值;
(2)求該函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y= 的定義域?yàn)椋?/span> )
A.(﹣∞,1]
B.(﹣∞,2]?
C.(﹣∞,﹣ )∩(﹣ ,1]
D.(﹣∞,﹣ )∪(﹣ ,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為常數(shù))的圖象在處的切線方程為.
(1)判斷函數(shù)的單調(diào)性;
(2)已知,且,若對(duì)任意,任意, 與中恰有一個(gè)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com