已知兩座燈塔A和B與海洋觀察站C的距離都等于a km,燈塔A在觀察站C的北偏東20°,燈塔B在觀察站C的南偏東40°,則燈塔A與B的距離為(  )
A、
3
a km
B、a km
C、
2
a km
D、2a km
考點:解三角形的實際應(yīng)用
專題:計算題,解三角形
分析:先根據(jù)題意求得∠ACB,進(jìn)而根據(jù)余弦定理求得AB.
解答: 解:依題意知∠ACB=180°-20°-40°=120°,
在△ABC中,由余弦定理知AB=
1+1+2×1×1×
1
2
=
3

即燈塔A與燈塔B的距離為
3
km.
故選A
點評:本題給出實際應(yīng)用問題,求海洋上燈塔A與燈塔B的距離.著重考查了三角形內(nèi)角和定理和運用余弦定理解三角形等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,且
1
an+1
=
1
an
+3(n∈N*),則a2015=( 。
A、6042
B、6048
C、
1
6043
D、
1
6047

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個三棱錐的側(cè)棱長都相等,底面是正三角形,其正(主)視圖如右圖所示.該三棱錐側(cè)面積和體積分別是( 。
A、
39
,
2
3
3
B、
39
,
8
3
C、
3
(
13
+1),
2
3
3
D、8,
8
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,根據(jù)下列條件解三角形,其中有兩個解的是( 。
A、b=10,A=45°,C=60°
B、a=6,c=5,B=60°
C、a=7,b=5,A=60°
D、a=14,b=16,A=45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某流程圖如圖所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是( 。
A、f(x)=
|x|
x
B、f(x)=ln(
x2+1
-x)
C、f(x)=
ex+e-x
ex-e-x
D、f(x)=
1-x2
|x+3|+|4-x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an},a1=1,an+1=
2an
an+2
(n∈N*),則a5=(  )
A、
1
3
B、
2
5
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)為偶函數(shù),且[0,+∞)上單調(diào)遞減,則y=f(2-x2)的一個單調(diào)遞增區(qū)間為( 。
A、(-∞,0]
B、[0,+∞)
C、[0,
2
]
D、[
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(ax+2)6,f′(x)是f(x)的導(dǎo)數(shù),若f′(x)的展開式中x的系數(shù)大于f(x)的展開式中x的系數(shù),則a的取值范圍是( 。
A、a>
2
5
或-2<a<0或a<-2
B、0<a<
2
5
C、a>
2
5
D、a>
2
5
或a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c是互不相等的正數(shù),求證:
(Ⅰ)a4+b4+c4>abc(a+b+c);
(Ⅱ)
a2+b2
+
b2+c2
+
c2+a2
2
(a+b+c).

查看答案和解析>>

同步練習(xí)冊答案