11.已知函數(shù)f(x)=x2+ax+b(a,b∈R).
(1)求證:f(-$\frac{a}{2}$+1)≤f(a2+$\frac{5}{4}$);
(2)①求:f(1)+f(3)-2f(2); 
②求證:|f(1)|,|f(2)|,|f(3)|中至少有一個(gè)不小于$\frac{1}{2}$.

分析 (1)利用函數(shù)的對稱軸為x=-$\frac{a}{2}$,函數(shù)在(-$\frac{a}{2}$,+∞)上單調(diào)遞增,即可證明結(jié)論;
(2)①根據(jù)函數(shù)f(x)的解析式,分別將x=1,2,3代入求得f(1),f(3),f(2),進(jìn)而求得f(1)+f(3)-2f(2);
②“至少有一個(gè)不小于”的反面情況較簡單,比較方便證明,故從反面進(jìn)行證明,用反證法.

解答 證明:(1)函數(shù)的對稱軸為x=-$\frac{a}{2}$,函數(shù)在(-$\frac{a}{2}$,+∞)上單調(diào)遞增.
∵a2+$\frac{5}{4}$-(-$\frac{a}{2}$+1)=(a+$\frac{1}{2}$)2≥0,
∴a2+$\frac{5}{4}$≥-$\frac{a}{2}$+1
∴f(-$\frac{a}{2}$+1)≤f(a2+$\frac{5}{4}$);
(2)①∵f(x)=x2+ax+b,
∴f(1)=1+a+b,f(2)=4+2a+b,f(3)=9+3a+b
∴f(1)+f(3)-2f(2)=(1+a+b)+(9+3a+b)-2(4+2a+b)=2;
②假設(shè)|f(1)|,|f(2)|,|f(3)|都小于$\frac{1}{2}$,
則:|f(1)|<$\frac{1}{2}$,|f(2)|<$\frac{1}{2}$,|f(3)|<$\frac{1}{2}$,
即有-$\frac{1}{2}$<f(1)<$\frac{1}{2}$,-$\frac{1}{2}$<f(2)<$\frac{1}{2}$,-$\frac{1}{2}$<f(3)<$\frac{1}{2}$,
∴-2<f(1)+f(3)-2f(2)<2
由(1)可知f(1)+f(3)-2f(2)=2,
與-2<f(1)+f(3)-2f(2)<2矛盾,
∴假設(shè)不成立,即原命題成立.

點(diǎn)評 反證法是一種從反面的角度思考問題的證明方法,體現(xiàn)的原則是正難則反.反證法的基本思想:否定結(jié)論就會(huì)導(dǎo)致矛盾,證題模式可以簡要的概括為“否定→推理→否定”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{2i}{1-i}$對應(yīng)的點(diǎn)到直線3x-4y+2=0距離為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.直線SC⊥面ABC,AB⊥BC,且AB=BC=1,SA=2,E為SA中點(diǎn),F(xiàn)為點(diǎn)C在線BS上的射影.
(Ⅰ)求證:CF⊥面SAB;
(Ⅱ)求三棱錐S-CEF的體積;
(Ⅲ)求面CEF與面ABC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若實(shí)數(shù)x滿足C18x=C183x-6,則x的取值集合為{3,6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知集合U={1,2,3,4},集合A={1,3,4},B={2,4},那么集合(∁UA)∩B={2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,A=120°,AB=4,若點(diǎn)D在邊BC上,且BD=2DC,AD=$\frac{{2\sqrt{7}}}{3}$,則AC的長為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)求過點(diǎn)A(2,3),且垂直于直線3x+2y-1=0的直線方程;
(2)已知直線l過原點(diǎn),且點(diǎn)M(5,0)到直線l的距離為3,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.微信是現(xiàn)代生活進(jìn)行信息交流的重要工具,隨機(jī)對使用微信的60人進(jìn)行了統(tǒng)計(jì),得到如下數(shù)據(jù)統(tǒng)計(jì)表,每天使用微信時(shí)間在兩小時(shí)以上的人被定義為“微信達(dá)人”,不超過2兩小時(shí)的人被定義為“非微信達(dá)人”,己知“非微信達(dá)人”與“微信達(dá)人”人數(shù)比恰為3:2.
(1)確定x,y,p,q的值,并補(bǔ)全須率分布直方圖;
(2)為進(jìn)一步了解使用微信對自己的日不工作和生活是否有影響,從“微信達(dá)人”和“非微信達(dá)人”60人中用分層抽樣的方法確定10人,若需從這10人中隨積選取3人進(jìn)行問卷調(diào)查,設(shè)選取的3人中“微信達(dá)人”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
使用微信時(shí)間(單位:小時(shí)) 頻數(shù)頻率 
 (0,0.5] 3 0.05
 (0.5,1] x p
 (1,1.5] 9 0.15
 (1.5,2] 15 0.25
 (2,2.5] 18 0.30
 (2.5,3] y q
 合計(jì) 601.00

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在(2+$\sqrt{x}$-$\frac{1}{{x}^{2006}}$)10的展開式中,x4項(xiàng)的系數(shù)為180.

查看答案和解析>>

同步練習(xí)冊答案