【題目】如圖,公園有一塊邊長為2的等邊ABC的邊角地,現(xiàn)修成草坪,圖中DE把草坪分成面積相等的兩部分,DAB上,EAC.

1)設(shè)ADxx≥1),EDy,求用x表示y的函數(shù)關(guān)系式;

2)如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應(yīng)在哪里?如果DE是參觀線路,則希望它最長,DE的位置又應(yīng)在哪里?請(qǐng)予證明.

【答案】1y1≤x≤2);(2證明見解析

【解析】試題分析:()先根據(jù)三角形面積求出AE,即,再根據(jù)余弦定理,最后根據(jù)邊長限制條件確定定義域: )由基本不等式可得當(dāng)且僅當(dāng)取最小值,由對(duì)勾函數(shù)值,當(dāng)且僅當(dāng)取最大值.

試題解析:(1)在中,

代入,

2)如果是水管

當(dāng)且僅當(dāng),即時(shí)“=”成立,故,且.

如果是參觀線路,記,

可知函數(shù)在上遞減,在上遞增,

,.

中線或中線時(shí), 最長.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若 的平均數(shù)為3,標(biāo)準(zhǔn)差為4,且 , ,則新數(shù)據(jù) 的平均數(shù)和標(biāo)準(zhǔn)差分別為( )
A.-9 12
B.-9 36
C.3 36
D.-3 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知內(nèi)角的角平分線.

(1)用正弦定理證明:

2)若,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過 300 分鐘的廣告,廣告總費(fèi)用不超過9萬元.甲、乙電視臺(tái)的廣告收費(fèi)標(biāo)準(zhǔn)分別為500元/分鐘和200元/分鐘.甲、乙兩個(gè)電視臺(tái)為該公司所做的每分鐘廣告,能給公司帶來的收益分別為0.3萬元和0.2萬元.設(shè)該公司在甲、乙兩個(gè)電視臺(tái)做廣告的時(shí)間分別為分鐘和分鐘.

(Ⅰ)用列出滿足條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

(Ⅱ)該公司如何分配在甲、乙兩個(gè)電視臺(tái)做廣告的時(shí)間使公司的收益最大,并求出最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

I)若,求曲線在點(diǎn)處的切線方程.

II)若,求函數(shù)的單調(diào)區(qū)間.

III)若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線與拋物線相交于不同兩點(diǎn)、, 為坐標(biāo)原點(diǎn).

1)求拋物線的焦點(diǎn)到準(zhǔn)線的距離;

2)若直線又與圓相切于點(diǎn),且為線段的中點(diǎn),求直線的方程;

3)若,點(diǎn)在線段上,滿足,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn)M(﹣2,﹣1),離心率為.過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q.

(Ⅰ)求橢圓C的方程;

(Ⅱ)試判斷直線PQ的斜率是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中, 為正三角形, , 為棱的中點(diǎn).

(1)求證:平面平面;

(2)若直線與平面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】供電部門對(duì)某社區(qū)位居民201611月份人均用電情況進(jìn)行統(tǒng)計(jì)后,按人均用電量分為, , 五組,整理得到如下的頻率分布直方圖,則下列說法錯(cuò)誤的是(

A. 11月份人均用電量人數(shù)最多的一組有

B. 11月份人均用電量不低于度的有

C. 11月份人均用電量為

D. 在這位居民中任選位協(xié)助收費(fèi),選到的居民用電量在一組的概率為

查看答案和解析>>

同步練習(xí)冊(cè)答案