一條河兩岸平行,水流速度為4km/h,一條小船在靜水中的速度為2km/h,船頭方向與河岸夾角多大時,它在水中的航程最短?
考點:向量的加法及其幾何意義
專題:平面向量及應(yīng)用
分析:由V<V,故當(dāng)船速v的方向與圓相切時,v與岸的夾角α最大,航程最短.進(jìn)而可得船頭方向與河岸夾角.
解答: 解:如圖所示:

∵V<V
當(dāng)船速v的方向與圓相切時,v與岸的夾角α最大,航程最短.
∵水流速度為4km/h,一條小船在靜水中的速度為2km/h,
設(shè)此時船頭方向與河岸夾角為θ,
則sinθ=
2
4
=
1
2
,
故當(dāng)船頭方向與河岸夾角為30°時,它在水中的航程最短.
點評:本題考查的知識點是向量在實際中的應(yīng)用,其中正確理解船速v的方向與圓相切時,v與岸的夾角α最大,航程最短,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i是虛數(shù)單位,則復(fù)數(shù)z=(
1+i
1-i
2013=( 。
A、-1B、1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C所對的邊,a=2
7
,b=2,c=2
3
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+ax2-e2x.
(1)若曲線y=f(x)在點(2,f(2))處的切線平行于x軸,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若x>0時,總有f(x)>-e2x,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量|
a
|=1,|
b
|=2,|
c
|=3,且
a
,
b
,
c
兩兩的夾角都是
2
3
π
,求:
(1)(2
a
+3
c
)•(
b
+2
c
);
(2)|
a
+
b
+
c
|;
(3)
a
+
b
+
c
c
所成的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:|x-4|≤6,q:x2-2x+1-m2≤0(m>0),若p是q的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個內(nèi)角A,B,C成等差數(shù)列且所對的邊分別為a,b,c.
(1)求B;
(2)若a=
3
sinA+cosA,求當(dāng)a取最大值時A,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(1)(2
7
9
)0.5+0.1-1+(2
10
27
)-
2
3
-3π0+9-0.5+490.5×2-4

(2)lg125+lg8+lg5lg20+lg22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
a1=2
a2=8
an+1+an-1=can,(n≥2).
(c為常數(shù),n∈N*
(1)當(dāng)c=2時,求an
(2)當(dāng)c=1時,求a2014的值;
(3)問:使an+3=an恒成立的常數(shù)c是否存在?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案