15.△ABC中,D是BC上的點(diǎn),AD平分∠BAC,BD=2DC
(Ⅰ) 求$\frac{sin∠B}{sin∠C}$.
(Ⅱ) 若∠BAC=60°,求∠B.

分析 (Ⅰ)由題意畫出圖形,再由正弦定理結(jié)合內(nèi)角平分線定理得答案;
(Ⅱ)由∠C=180°-(∠BAC+∠B),兩邊取正弦后展開兩角和的正弦,再結(jié)合(Ⅰ)中的結(jié)論得答案.

解答 解:(Ⅰ)如圖,
由正弦定理得:
$\frac{AD}{sin∠B}=\frac{BD}{sin∠BAD},\frac{AD}{sin∠C}=\frac{DC}{sin∠CAD}$,
∵AD平分∠BAC,BD=2DC,
∴$\frac{sin∠B}{sin∠C}=\frac{DC}{BD}=\frac{1}{2}$;
(Ⅱ)∵∠C=180°-(∠BAC+∠B),∠BAC=60°,
∴$sin∠C=sin(∠BAC+∠B)=\frac{\sqrt{3}}{2}cos∠B+\frac{1}{2}sin∠B$,
由(Ⅰ)知2sin∠B=sin∠C,
∴tan∠B=$\frac{\sqrt{3}}{3}$,即∠B=30°.

點(diǎn)評(píng) 本題考查了內(nèi)角平分線的性質(zhì),考查了正弦定理的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知橢圓E的中心在坐標(biāo)原點(diǎn),離心率為$\frac{1}{2}$,E的右焦點(diǎn)與拋物線C:y2=8x的焦點(diǎn)重合,A,B是C的準(zhǔn)線與E的兩個(gè)交點(diǎn),則|AB|=(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.i為虛數(shù)單位,i607=( 。
A.-iB.iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購買一定金額商品后即可抽獎(jiǎng),每次抽獎(jiǎng)都從裝有4個(gè)紅球、6個(gè)白球的甲箱和裝有5個(gè)紅球、5個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,在摸出的2個(gè)球中,若都是紅球,則獲一等獎(jiǎng),若只有1個(gè)紅球,則獲二等獎(jiǎng);若沒有紅球,則不獲獎(jiǎng).
(1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率;
(2)若某顧客有3次抽獎(jiǎng)機(jī)會(huì),記該顧客在3次抽獎(jiǎng)中獲一等獎(jiǎng)的次數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入a,b分別為14,18,則輸出的a=( 。
A.0B.2C.4D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},則集合A∩∁UB=( 。
A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.一個(gè)幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為$\frac{8π}{3}$m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若a=log43,則2a+2-a=$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C的極坐標(biāo)方程為ρ2+2$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)-4=0,求圓C的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案