分析 (Ⅰ)由a1=1,且a1,a3,a9成等比數(shù)列,則$\frac{1+2d}{1}$=$\frac{1+8d}{1+2d}$,解得:d=1,利用等差數(shù)列通項公式即可求得數(shù)列{an}的通項;
(Ⅱ)由${2}^{{a}_{n}}$=2n,則利用等比數(shù)列通項公式即可求得Sn.
解答 解:(Ⅰ)由題設(shè)知公差d,d≠0,
由a1=1,且a1,a3,a9成等比數(shù)列,則$\frac{1+2d}{1}$=$\frac{1+8d}{1+2d}$,
解得:d=1或d=0(舍去),
an=a1+(n-1)d=1+(n-1)×1=n,
故{an}的通項an=n;
(Ⅱ)由題意知${2}^{{a}_{n}}$=2n,
由等比數(shù)列前n項和公式得Sn=2+22+23+…+2n=$\frac{2(1-{2}^{n})}{1-2}$=2n+1-2,
數(shù)列{${2}^{{a}_{n}}$}的前n項和Sn=2n+1-2.
點評 本題考查等比數(shù)列及等比數(shù)列通項公式,考查計算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 1 | C. | -$\sqrt{3}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,+∞) | B. | (-∞,1) | C. | (-∞,$\frac{3}{2}$] | D. | (2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com