20.已知直線l與拋物線y2=x相交于A(x1,y1),B(x2,y2)兩點,若y1y2=-1,
(1)求證:直線l過定點M,并求點M的坐際;
(2)求證:OA⊥OB;
(3)求△AOB的面積的最小值.

分析 (1 ) 設(shè)M點的坐標(biāo)為(x,0),直線l方程為 x=my+x,代入y2=x得y2-my-x=0 可證得M點的坐標(biāo)為(1,0).
(2)根據(jù)y1y2=-1結(jié)合向量的坐標(biāo)運算得出OA⊥OB.
(3)直線AB過點(1,0),OA⊥OB,當(dāng)直線AB過(1,0)且垂直于x軸時,△AOB的面積的取最小值.由此能求出結(jié)果.

解答 (1 ) 證明:設(shè)M點的坐標(biāo)為(x,0),直線l方程為 x=my+x,代入y2=x得
y2-my-x=0        ①,
∵y1、y2是此方程的兩根,
∴x=-y1y2=1,即M點的坐標(biāo)為(1,0).
(2)證明:∵y1y2=-1
∴x1x2+y1y2=y12y22+y1y2=y1y2(y1y2+1)=0,
∴OA⊥OB.
(3)解:由方程①,y1+y2=m,y1y2=-1,且|OM|=x=1,
于是S△AOB=$\frac{1}{2}$|OM||y1-y2|=$\frac{1}{2}\sqrt{{m}^{2}+4}$≥1,
∴當(dāng)m=0時,△AOB的面積取最小值1.

點評 本題考查拋物線的簡單性質(zhì),考查三角形面積的最小值的求法,解題時要認真審題,仔細解答,注意拋物線性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)不等式組$\left\{\begin{array}{l}{x+y≤\sqrt{2}}\\{x-y≥-\sqrt{2}}\\{y≥0}\end{array}\right.$所表示的區(qū)域為M,函數(shù)y=$\sqrt{1-{x}^{2}}$的圖象與x軸所圍成的區(qū)域為N,向M內(nèi)隨機投一個點,求該點落在N內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列各式:
(1)${[{(-\sqrt{2})^{-2}}]^{-\frac{1}{2}}}=-\sqrt{2}$;
(2)已知${log_a}\frac{2}{3}<1$,則$a>\frac{2}{3}$;
(3)函數(shù)y=2x的圖象與函數(shù)y=-2-x的圖象關(guān)于原點對稱;
(4)函數(shù)f(x)=$\sqrt{m{x^2}+mx+1}$的定義域是R,則m的取值范圍是0<m≤4;
(5)已知函數(shù)f(x)=x2+(2-m)x+m2+12為偶函數(shù),則m的值是2.
其中正確的有(3)(5).(把你認為正確的序號全部寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.拋物線y2=2px(p>0)的焦點為F,P為拋物線上一點,則以線段|PF|為直徑的圓與y軸位置關(guān)系為(  )
A.相交B.相離C.相切D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=log2(2x-1),F(xiàn)(x)=f(x+1)-f(1-x).
(Ⅰ)求F(x)的定義域;
(Ⅱ)判斷F(x)的奇偶性;
(Ⅲ)解方程F(x)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.?dāng)?shù)列{an}中,a1=t,a2=t2,t∈(1,2),且an+1+tan-1=(t+1)an(n∈N,n≥2).
(I)求證:數(shù)列{an+1-an}是等比數(shù)列,并求其通項公式;
(Ⅱ)若bn=$\frac{{{a}_{n}}^{2}+1}{2{a}_{n}}$(n∈N*),Sn為數(shù)列{bn}的前n項和,求證:Sn<2n-${2}^{-\frac{n}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a=2-sin1,b=-$\frac{π}{6}$+sin$\frac{π}{12}$,c=-$\frac{π}{4}$+sin$\frac{π}{8}$,則( 。
A.b>c>aB.a>b>cC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知tan($\frac{π}{4}$+α)=-$\frac{1}{2}$.
(1)求tanα的值;
(2)求sin2α-cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.化簡求值
(1)$\frac{cos20°}{sin20°}$•cos10°+$\sqrt{3}$sin10°•tan70°-2cos40°
(2)(tan10°-$\sqrt{3}$)$\frac{cos10°}{sin50°}$.

查看答案和解析>>

同步練習(xí)冊答案