分析 (Ⅰ)由題意可得:$\left\{\begin{array}{l}\frac{1^2}{a^2}+\frac{1}{{2{b^2}}}=1\\{a^2}-{b^2}=1\end{array}\right.$,解出即可得出.
(Ⅱ)當(dāng)直線EM斜率存在時(shí),設(shè)直線方程為l:y=kx+m,E(x1,y1),M(x2,y2),與橢圓方程聯(lián)立得(1+2k2)x2+4kmx+2m2-2=0,利用斜率計(jì)算公式、根與系數(shù)的關(guān)系及其${k_{OE}}•{k_{OM}}=\frac{{{y_1}{y_2}}}{{{x_1}{x_2}}}=-\frac{1}{2}$,可得2m2=2k2+1,原點(diǎn)到直線EM的距離為$d=\frac{|m|}{{\sqrt{1+{k^2}}}}$,利用${S_{△OEM}}=\frac{1}{2}|{EM}|d=\frac{1}{2}\sqrt{1+{k^2}}|{{x_1}-{x_2}}|\frac{|m|}{{\sqrt{1+{k^2}}}}$,代入化簡即可得出定值,斜率不存在時(shí)也成立.
解答 解:(Ⅰ)∵為點(diǎn)$P({1,\frac{{\sqrt{2}}}{2}})$在橢圓C上,橢圓C的右焦點(diǎn)為F2(1,0),
則$\left\{\begin{array}{l}\frac{1^2}{a^2}+\frac{1}{{2{b^2}}}=1\\{a^2}-{b^2}=1\end{array}\right.$,解得$\left\{\begin{array}{l}{a^2}=2\\{b^2}=1\end{array}\right.$,
∴橢圓C的方程為$\frac{x^2}{2}+{y^2}=1$.
(Ⅱ)當(dāng)直線EM斜率存在時(shí),設(shè)直線方程為l:y=kx+m,E(x1,y1),M(x2,y2),
聯(lián)立$\left\{\begin{array}{l}y=kx+m\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.$得(1+2k2)x2+4kmx+2m2-2=0,$\left\{\begin{array}{l}{x_1}+{x_2}=-\frac{4km}{{1+2{k^2}}}\\{x_1}{x_2}=\frac{{2{m^2}-2}}{{1+2{k^2}}}\end{array}\right.$,
${y_1}{y_2}=(k{x_1}+m)(k{x_2}+m)={k^2}{x_1}{x_2}+km({x_1}+{x_2})+{m^2}$=$\frac{{{m^2}-2{k^2}}}{{1+2{k^2}}}$,
由${k_{OE}}•{k_{OM}}=\frac{{{y_1}{y_2}}}{{{x_1}{x_2}}}=-\frac{1}{2}$得$\frac{{\frac{{{m^2}-2{k^2}}}{{1+2{k^2}}}}}{{\frac{{2{m^2}-2}}{{1+2{k^2}}}}}=-\frac{1}{2}$,即2m2=2k2+1,
原點(diǎn)到直線EM的距離為$d=\frac{|m|}{{\sqrt{1+{k^2}}}}$,
∴${S_{△OEM}}=\frac{1}{2}|{EM}|d=\frac{1}{2}\sqrt{1+{k^2}}|{{x_1}-{x_2}}|\frac{|m|}{{\sqrt{1+{k^2}}}}$
=$\frac{|m|}{2}|{{x_1}-{x_2}}|=\frac{|m|}{2}\sqrt{{{({x_1}+{x_2})}^2}-4{x_1}{x_2}}$=$\frac{|m|}{2}\sqrt{{{(-\frac{4km}{{1+2{k^2}}})}^2}-4×\frac{{2{m^2}-2}}{{1+2{k^2}}}}$
=$\frac{|m|}{2}\sqrt{\frac{{16{k^2}{m^2}-4(2{m^2}-2)(1+2{k^2})}}{{{{(1+2{k^2})}^2}}}}$
=$\frac{|m|}{2}\sqrt{\frac{{8(1+2{k^2}-{m^2})}}{{{{(1+2{k^2})}^2}}}}=\frac{|m|}{2}\sqrt{\frac{{8(2{m^2}-{m^2})}}{{4{m^4}}}}=\frac{{\sqrt{2}}}{2}$,
∴${S_{EMFN}}=4{S_{△OEM}}=2\sqrt{2}$.
當(dāng)直線EM斜率不存在時(shí),${k_{OE}}•{k_{OM}}=\frac{{{y_1}{y_2}}}{{{x_1}{x_2}}}=-\frac{1}{2}$,x1=x2,y1=-y2,∴${k_{OE}}•{k_{OM}}=-\frac{{{y_1}^2}}{{{x_1}^2}}=-\frac{1}{2}$,
又$\frac{x_1^2}{2}+y_1^2=1$,解得$x_1^2=1,y_1^2=\frac{1}{2}$,${S_{EMFN}}=2\sqrt{2}$.
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交弦長問題、斜率計(jì)算公式、平行四邊形的面積計(jì)算公式,考查了分類討論方法、推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(sinA)>f(cosA) | B. | f(sinA)>f(cosB) | C. | f(sinC)<f(cosB) | D. | f(sinC)>f(cosB) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2} | B. | {1,2} | C. | {1,2,3} | D. | {0,1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{π}{6}$ | B. | $-\frac{π}{3}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-$\sqrt{2}$ | B. | 1-$\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$-1 | D. | $\frac{\sqrt{2}}{2}$-1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com