16.過點(-2,4)且在兩坐標軸上的截距互為相反數(shù)的直線有( 。
A.1條B.2條C.3條D.4條

分析 可分①當在坐標軸上截距為0時與②在坐標軸上截距不為0時討論解決.

解答 解:①當在坐標軸上截距為0時,所求直線方程為:y=-2x,即2x+y=0;
②當在坐標軸上截距不為0時,∵在坐標軸上截距互為相反數(shù),
∴x-y=a,將A(-2,4)代入得,a=-6,
∴此時所求的直線方程為x-y+6=0;
共有2條,
故選:B.

點評 本題考查直線的截距式方程,當在坐標軸上截距為0時容易忽略,考查分類討論思想與縝密思考的習慣.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.若不等式4x3-3x2+$\frac{1}{4}$≥k對任意的x∈[0,2]都成立,則實數(shù)k的最大值為(  )
A.$\frac{1}{2}$B.2C.0D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知不論b取何實數(shù),直線y=kx+b與雙曲線x2-2y2=1總有公共點,試求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.一臺機器使用的時間較長,但還可以使用,它按不同的轉速生產出來的某機械零件有一些會有缺點,每小時生產有缺點零件的多少,隨機器的運轉的速度而變化,如表為抽樣實驗的結果
轉速x(轉/秒)24568
每小時生產有缺點的零件數(shù)y(件)1030605080
(1)已知y對x有線性相關關系,求回歸直線方程;
(2)在實際生活中,預測每小時的產品中有缺點的零件為92個時,機器運轉速度是多少.
(參考數(shù)值$\sum_{i=1}^5{{x_i}{y_i}}=1380$,$\sum_{i=1}^5{{x_i}^2}=145$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.(1+x+x2)(x-$\frac{1}{x}$)6的展開式中常數(shù)項為m,則函數(shù)y=-x2與y=mx的圖象所圍成的封閉圖形的面積為( 。
A.$\frac{625}{6}$B.$\frac{250}{6}$C.$\frac{375}{6}$D.$\frac{125}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知A(-1,2)為拋物線C:y=2x2上的點,直線l1過點A,且與拋物線C相切.直線l2:x=a(a≠-1)交拋物線C于點B,交直線l1于點D.設△ABD的面積為S1
(1)求直線l1的方程及S1的值;
(2)設由拋物線C,直線l1,l2所圍成的圖形的面積為S2,求S1:S2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.回歸分析是處理變量之間相關關系的一種數(shù)量統(tǒng)計方法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.某,F(xiàn)有高一、高二、高三三個年級共48個教學班,各年級學生數(shù)分別是1000,1050,1200,若按分層抽樣從全校抽出65名學生,則高二年級比高一年級多抽出1名學生.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖,已知直線y=kx+m與曲線y=f(x)相切于兩點,則F(x)=f(x)-kx有( 。
A.1個極大值點,2個極小值點B.2個極大值點,1個極小值點
C.3個極大值點,無極小值點D.3個極小值點,無極大值點

查看答案和解析>>

同步練習冊答案