16.某次市教學(xué)質(zhì)量檢測,甲、乙、丙三科考試成績的直方圖如圖所示(由于人數(shù)眾多,成績分布的直方圖可視為正態(tài)分布),則由圖中曲線可得下列說法中正確的一個是(  )
A.甲、乙、丙的總體的平均數(shù)不相同B.乙科總體的標準差及平均數(shù)都居中
C.丙科總體的平均數(shù)最小D.甲科總體的標準差最小

分析 根據(jù)正態(tài)曲線的特征進行判斷,從圖中看出,正態(tài)曲線的對稱軸相同,最大值不同,從而得出平均數(shù)和標準差的大小關(guān)系,即可得到選項.

解答 解:由題中圖象可知三科總體的平均數(shù)(均值)相等,
由正態(tài)密度曲線的性質(zhì),可知σ越大,正態(tài)曲線越扁平,σ越小,正態(tài)曲線越尖陡,
故三科總體的標準差從小到大依次為甲、乙、丙.
故選D.

點評 本題主要考查了正態(tài)分布曲線的特點及曲線所表示的意義,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)離心率e=$\frac{\sqrt{2}}{2}$,過C(-1,0)點且斜率為1的直線l與橢圓交于A,B兩點,且C點分有向線段$\overrightarrow{AB}$所成的比為3.
(1)求該橢圓方程;
(2)P,Q為橢圓上兩動點,滿足$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,探求$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若f(x)=ax3+3x2+2,f′(-1)=3,則a的值等于( 。
A.5B.4C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A、B、C的對邊分別為a、b、c,且$\frac{2b-a}{cosA}=\frac{c}{cosC}$.
(Ⅰ)求角C的值;
(Ⅱ)若BC=2$\sqrt{2}$,BC邊上的中線AM=$\sqrt{26}$,求AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓C:x2+y2-4x+3=0,
(1)求過M(3,2)點的圓的切線方程;
(2)直線l:2mx+2y-1-3m=0被圓C截得的弦長最短時,求直線l的方程;
(3)過原點的直線m與圓C交于不同的兩點A、B,線段AB的中點P的軌跡為C1,直線$y=k(x-\frac{5}{2})$與曲線C1只有一個交點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知方程$\frac{x^2}{m-1}+\frac{y^2}{4-m}=1$表示焦點在x軸上的雙曲線的一個充分不必要條件是( 。
A.(4,+∞)B.(5,+∞)C.$(1,\frac{5}{2})$D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若變量x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+y≤8\\ 2y-x≤4\end{array}\right.$,且z=5y-x的最大值為a,最小值為b,則a-b的值是( 。
A.16B.24C.30D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知兩點A(1,2).B(2,1)在直線mx-y+1=0的異側(cè),則實數(shù)m的取值范圍為( 。
A.(-∞,0)B.(1,+∞)C.(0,1)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1 (a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,A(a,0),B(0,b),O(0,0),△OAB的面積為1.
(1)求橢圓C的方程;
(2)斜率為2的直線與橢圓交于P、Q兩點OP⊥OQ,求直線l的方程;
(3)在x上是否存在一點E使得過E的任一直線與橢圓若有兩個交點M、N則都有$\frac{1}{{|EM{|^2}}}+\frac{1}{{|EN{|^2}}}$為定值?若存在,求出點E的坐標及相應(yīng)的定值.

查看答案和解析>>

同步練習(xí)冊答案