7.若f(x)=ax3+3x2+2,f′(-1)=3,則a的值等于(  )
A.5B.4C.3D.6

分析 求函數(shù)的導(dǎo)數(shù),解導(dǎo)數(shù)方程即可.

解答 解∵f(x)=ax3+3x2+2,
∴f′(x)=3ax2+6x,
∴f′(-1)=3a-6=3,∴a=3.
故選:C

點(diǎn)評 本題主要考查導(dǎo)數(shù)的計算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若“p∧q”為假命題,“¬p∨q”為真命題,則p,q的真假為( 。
A.p假且q假B.p假,q真或q假C.p真且q假D.p真,q真或q假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,三棱柱ABC-A1B1C1的側(cè)面ABB1A1為正方形,側(cè)面BB1C1C為菱形,∠CBB1=60°,AB⊥B1C
(1)求證:平面ABB1A1⊥平面BB1C1C;
(2)若AB=2,求三棱柱ABC-A1B1C1的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow{a}$=(-2,2,-1),向量$\overrightarrow$=(0,3,-4),則向量$\overrightarrow{a}$在向量$\overrightarrow$上的投影是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.條件p:不等式$\frac{x-3}{x+1}≤0$的解;條件q:不等式x2-2x-3<0的解,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若集合M={y|y=$\frac{1}{{x}^{2}}$},N={x|y=$\sqrt{x-1}$},那么M∩N=(  )
A.(0,+∞)B.(1,+∞)C.[1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若(ax2+$\frac{1}{\sqrt{x}}$)5的展開式中常數(shù)是-80,則實數(shù)a=-16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某次市教學(xué)質(zhì)量檢測,甲、乙、丙三科考試成績的直方圖如圖所示(由于人數(shù)眾多,成績分布的直方圖可視為正態(tài)分布),則由圖中曲線可得下列說法中正確的一個是(  )
A.甲、乙、丙的總體的平均數(shù)不相同B.乙科總體的標(biāo)準(zhǔn)差及平均數(shù)都居中
C.丙科總體的平均數(shù)最小D.甲科總體的標(biāo)準(zhǔn)差最小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若直線l過拋物線x2=-8y的焦點(diǎn)F,且與雙曲線$\frac{x^2}{9}-\frac{y^2}{3}=1$在一、三象限的漸近線平行,則直線l截圓${({x-4\sqrt{3}})^2}+{y^2}=4$所得的弦長為2.

查看答案和解析>>

同步練習(xí)冊答案