分析 (1)由圓的方程求出圓心和半徑,易得點A在圓外,當切線的斜率不存在時,切線方程為x=3.當切線的斜率存在時,設切線的斜率為k,寫出切線方程,利用圓心到直線的距離等于半徑,解出k,可得切線方程;
(2)當直線l⊥CN時,弦長最短,可求直線l的方程;
(3)求出軌跡C1,利用直線$y=k(x-\frac{5}{2})$與曲線C1只有一個交點,求k的值.
解答 解:(1)圓C:x2+y2-4x+3=0,即 (x-2)2+y2=1,表示以(2,0)為圓心,半徑等于1的圓.
當切線的斜率不存在時,切線方程為x=3符合題意.
當切線的斜率存在時,設切線斜率為k,則切線方程為 y-2=k(x-3),即kx-y-3k+2=0,
所以,圓心到切線的距離等于半徑,即$\frac{|-k+2|}{\sqrt{{k}^{2}+1}}$=1,解得k=$\frac{3}{4}$,此時,切線為3x-4y-1=0.
綜上可得,圓的切線方程為x=3或3x-4y-1=0…(3分)
(2)直線l:2mx+2y-1-3m=0恒過定點$N({\frac{3}{2},\frac{1}{2}})$
當直線l⊥CN時,弦長最短,此時直線的方程為x-y-1=0…(7分)
(3)設點P(x,y),∵點P為線段AB的中點,曲線C是圓心為C(2,0),半徑r=1的圓,∴CP⊥OP,$\overrightarrow{CP}•\overrightarrow{OP}=0$∴化簡得(x-1)2+y2=1…(9分)
由于點P在圓內,由$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}-4x+3=0}\\{{x}^{2}+{y}^{2}-2x=0}\end{array}\right.$得x=$\frac{3}{2}$
所以C1:${({x-1})^2}+{y^2}=1({\frac{3}{2}<x≤2})$(注:范圍也可寫成$x>\frac{3}{2}$)…(10分)
圓心到直線的距離d=$\frac{|-\frac{3}{2}k|}{\sqrt{{k}^{2}+1}}$=1,∴$k=±\frac{{2\sqrt{5}}}{5}$,
過($\frac{3}{2}$,$\frac{\sqrt{5}}{2}$)時,k=$\frac{\sqrt{3}}{2}$
因為直線$y=k(x-\frac{5}{2})$與曲線C1只有一個交點,所以$-\frac{{\sqrt{3}}}{2}≤k≤\frac{{\sqrt{3}}}{2}$或$k=±\frac{{2\sqrt{5}}}{5}$…(12分)
點評 本題考查求圓的切線方程的方法,考查軌跡方程,考查點到直線距離公式的運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 3 | C. | 2 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 甲、乙、丙的總體的平均數(shù)不相同 | B. | 乙科總體的標準差及平均數(shù)都居中 | ||
C. | 丙科總體的平均數(shù)最小 | D. | 甲科總體的標準差最小 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{2}}}{4}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com