函數(shù)y=
log2(2x-1)
的定義域為(  )
A、(
1
2
,+∞)
B、[1,+∞)
C、(
1
2
,1]
D、(-∞,1)
考點:對數(shù)函數(shù)的定義域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)y的解析式,二次根式的被開方數(shù)大于或等于0,求出x的取值范圍即可.
解答: 解:∵函數(shù)y=
log2(2x-1)
,
∴l(xiāng)og2(2x-1)≥0,
∴2x-1≥1;
解得x≥1,
∴函數(shù)y的定義域為[1,+∞).
故選:B.
點評:本題考查了求函數(shù)定義域的問題,即求使函數(shù)解析式有意義的自變量的取值范圍,是基礎(chǔ)題目.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
m
-
1
x
(x∈(0,+∞)).
(1)求證:函數(shù)f(x)是增函數(shù);
(2)若函數(shù)f(x)在[a,b]上的值域是[2a,2b](0<a<b),求實數(shù)m的取值范圍;
(3)若存在x∈(1,+∞),使不等式f(x-1)>4x成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
1
1-i
+
3
2+3i
-2i在復(fù)平面內(nèi)對應(yīng)的點到原點的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:存在x∈R,使得a≥2sinx+1;命題q:任意x∈(0,+∞),不等式a≤
1
x
+x恒成立,
(1)寫出“非p”命題,并判斷“非p”是q成立的什么條件(充分不必要條件、必要不充分條件、充要條件、既不充分又不必要條件);
(2)若“p或q”為真“p且q”為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)y=f(x)在(-∞,0]上單調(diào)遞減,則函數(shù)y=f(|x|)滿足.
A、是奇函數(shù)在(-∞,
1
2
)上遞減
B、是偶函數(shù),在(-∞,0)上遞減
C、是偶函數(shù),在(-∞,0]上遞增
D、是偶函數(shù),在(-∞,1)上遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項公式an=
1
n2
,證明{an}的前n項和小于
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B兩島相距100km,B在A的北偏東30°,甲船自A以40km/h的速度向B航行,同時乙船自B以30km/h的速度沿方位角150°(即東偏南60°)方向航行,當兩船之間的距離最小時,兩船合計航行距離( 。
A、等于
65
7
km
B、小于100km
C、大于100km
D、等于100km

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=Asin(2x+φ)+k(-π<φ<0),它的圖象的一條對稱軸是x=
π
8

(1)若A=1,求f(x)的單調(diào)增區(qū)間;
(2)若f(x)的最大值為3,最小值為-1,求A與k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,且在雙曲線上存在異于頂點的一點P,滿足tan
∠PF1F2
2
=2tan
∠PF2F1
2
,則該雙曲線的離心率為( 。
A、
3
B、
5
C、2
D、3

查看答案和解析>>

同步練習冊答案