4.已知向量$\overrightarrow a$=(4,4),$\overrightarrow b$=(5,m)(m∈R),$\overrightarrow c$=(1,3),若($\overrightarrow a$-2$\overrightarrow c$)⊥$\overrightarrow b$,則|$\overrightarrow b$|=( 。
A.5B.5$\sqrt{2}$C.10D.10$\sqrt{2}$

分析 利用向量的坐標(biāo)運算和向量的模以及向量垂直的條件求解即可.

解答 解:∵向量$\overrightarrow a$=(4,4),$\overrightarrow b$=(5,m)(m∈R),$\overrightarrow c$=(1,3),
∴$\overrightarrow a$-2$\overrightarrow c$=(4-2,4-6)=(2,-2),
∵($\overrightarrow a$-2$\overrightarrow c$)⊥$\overrightarrow b$,
∴($\overrightarrow a$-2$\overrightarrow c$)•$\overrightarrow b$=0,
∴5×2-2m=0,
解得m=5,
∴$\overrightarrow b$=(5,5),
∴|$\overrightarrow b$|=5$\sqrt{2}$,
故選:B

點評 本題考查向量的坐標(biāo)運算以及向量的垂直的條件,考查計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(普通班題)已知sinα=$\frac{3}{5}$,且$\frac{π}{2}$<α<π.
(1)求cos($\frac{π}{4}$-α)的值;
(2)求sin($\frac{2π}{3}$+2α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.給出下列三個結(jié)論:
①若命題p:?x0∈R,x${\;}_{0}^{2}$+x0+1≤0,則¬p:?x∈R,x2+x+1>0;
②命題“若m>0,則方程x2+x-m=0有實數(shù)根”的否命題為:“若m≤0,則方程x2+x-m=0沒有實數(shù)根”;
③命題p:a=1是x>0,x+$\frac{a}{x}$≥2恒成立的充要條件.
其中正確的是(  )
A.B.②③C.①②D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,長方體ABCD-EFGH,底面是邊長為2$\sqrt{3}$的正方形,DH=2,P為AH中點.
(1)求四棱錐F-ABCD的體積;
(2)若點M在正方形ABCD內(nèi)(包括邊界),且三棱錐P-AMB體積是四棱錐F-ABCD體積的$\frac{1}{8}$,請指出滿足要求的點M的軌跡,并在圖中畫出軌跡圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知平面向量$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(1,1),$\overrightarrow{c}$=(-5,1),若($\overrightarrow{a}$+k$\overrightarrow$)⊥$\overrightarrow{c}$,則實數(shù)k的值為-$\frac{11}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知f(x)=-x2+4x+m的最大值為4,則不等式f(x)>x的解集為(0,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=a2x-1(a>0且a≠1)過定點( 。
A.(1,1)B.($\frac{1}{2}$,0)C.(1,0)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.化簡($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$•$\frac{(\sqrt{4a^{-1}})^{3}}{0.{1}^{-2}({a}^{3}^{-3})^{\frac{1}{2}}}$(a>0,b>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直三棱錐ABC-A1B1C1中,AA1=AB=AC=2,E,F(xiàn)分別是CC1,BC的中點,AE⊥A1B1,D為棱A1B1上的點.
(1)證明:DF⊥AE;
(2)是否存在一點D,使得平面DEF與平面ABC夾角的余弦值為$\frac{\sqrt{14}}{14}$?若存在,說明點D的位置,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案