12.若定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且在區(qū)間[0,1]上單調(diào)遞減,則將$f({-\frac{5}{2}})$,f(7),f(4)從小到大順序排列為$f(7)<f({-\frac{5}{2}})<f(4)$.

分析 根據(jù)條件求出函數(shù)的周期性,利用函數(shù)奇偶性,周期性和單調(diào)性進行轉(zhuǎn)化求解即可.

解答 解:由f(x+1)=-f(x),得f(x+2)=-f(x+1)=f(x),
即函數(shù)的周期是2,
則$f({-\frac{5}{2}})$=f(-$\frac{1}{2}$)=f(-$\frac{1}{2}$),f(7)=f(7-6)=f(1),
f(4)=f(0),
∵在區(qū)間[0,1]上單調(diào)遞減,
∴f(1)<f($\frac{1}{2}$)<f(0),
即$f(7)<f({-\frac{5}{2}})<f(4)$,
故答案為:$f(7)<f({-\frac{5}{2}})<f(4)$

點評 本題主要考查函數(shù)值的大小比較,根據(jù)條件求出函數(shù)的周期性,利用函數(shù)奇偶性,周期性和單調(diào)性進行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知正數(shù)x,y滿足x+2y=3,當(dāng)xy取得最大值時,過點P(x,y)引圓:(x-$\frac{1}{2}$)2+(y+$\frac{1}{4}$)2=$\frac{1}{2}$的切線,則此切線段的長度為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.計算
(1)$\frac{1-2i}{3+4i}$  
(2)$\frac{{2-\sqrt{3}i}}{{2+\sqrt{3}i}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積為(  )
A.$20+\sqrt{5}π$B.$24+\sqrt{5}π$C.$20+(\sqrt{5}-1)π$D.$24+(\sqrt{5}-1)π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則該幾何體的體積等于( 。
A.6+6πB.6+8πC.8+6πD.8+8π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知復(fù)數(shù)z=x+(x-a)i,若對任意實數(shù)x∈(1,2),恒有|z|>|$\overline{z}$+i|,則實數(shù)a的取值范圍為( 。
A.(-∞,$\frac{1}{2}$]B.(-∞,$\frac{1}{2}$)C.[$\frac{3}{2}$,+∞)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.天干地支紀年法,源于中國.中國自古便有十天干與十二地支.
十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;
十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.
天干地支紀年法是按順序以一個天干和一個地支相配,排列起來,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類推.排列到“癸酉”后,天干回到“甲”重新開始,即“甲戌”,“乙亥”,之后地支回到“子”重新開始,即“丙子”,…,以此類推.
已知2017年為丁酉年,那么到改革開放100年時,即2078年為戊戌年.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=\left\{\begin{array}{l}-2x-{x^2},x≤0\\|{lgx}|,x>0\end{array}\right.$,若a<b<c<d,且f(a)=f(b)=f(c)=f(d),則a+b+c+2d的取值范圍是( 。
A.$({3,\frac{201}{10}})$B.$({1,\frac{181}{10}})$C.$({2\sqrt{2},+∞})$D.$({2\sqrt{2}-2,+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在拋物線y=x2與直線y=2圍成的封閉圖形內(nèi)任取一點A,O為坐標原點,則直線OA被該封閉圖形解得的線段長小于$\sqrt{2}$的概率是( 。
A.$\frac{{\sqrt{3}}}{15}$B.$\frac{{\sqrt{3}}}{16}$C.$\frac{{\sqrt{2}}}{16}$D.$\frac{{\sqrt{2}}}{14}$

查看答案和解析>>

同步練習(xí)冊答案