分析 (Ⅰ)由an+1=9Sn+10化簡可得an+1=10an,(n≥2);再求得a1=10,a2=100,a3=1000;從而證明;
(Ⅱ)由(Ⅰ)知,an=10n,lgan=n,從而化簡bn=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),從而求和.
解答 證明:(Ⅰ)∵an+1=9Sn+10,∴an=9Sn-1+10,
∴an+1-an=9an,∴an+1=10an,(n≥2);
∵a1=10,a2=9S1+10=90+10=100,
a3=9S2+10=990+10=1000;
故數(shù)列{an}是以10為首項,10為公比的等比數(shù)列;
(Ⅱ)由(Ⅰ)知,an=10n,lgan=n,
故bn=$\frac{2}{(lg{a}_{n})(lg{a}_{n+1})}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
故Tn=2(1-$\frac{1}{2}$)+2($\frac{1}{2}$-$\frac{1}{3}$)+…+2($\frac{1}{n}$-$\frac{1}{n+1}$)
=2(1-$\frac{1}{n+1}$)
=$\frac{2n}{n+1}$.
點評 本題考查了an與Sn的關(guān)系式的應(yīng)用及等比數(shù)列的判斷,同時考查了裂項求和法的應(yīng)用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 58 | B. | 88 | C. | 143 | D. | 176 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com