精英家教網 > 高中數學 > 題目詳情
13、已知二次函數y=f(x)滿足條件f(0)=1,f(x+1)-f(x)=2x,則函數f(x)的表達式為
f(x)=x2-x+1
分析:據二次函數的形式設出f(x)的解析式,將已知條件代入,列出方程,令方程兩邊的對應系數相等解得.
解答:解:設y=f(x)=ax2+bx+c
∵f(0)=1,f(x+1)-f(x)=2x
∴c=1;a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x
∴∴2a=2,a+b=0
解得a=1,b=-1
函數f(x)的表達式為f(x)=x2-x+1
故答案為f(x)=x2-x+1
點評:本題考查利用待定系數法求函數模型已知的函數解析式.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知二次函數y=f(x)(x∈R)的圖象過點(0,-3),且f(x)>0的解集(1,3).
(1)求f(x)的解析式;
(2)求函數y=f(sinx),x∈[0,
π2
]
的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數y=f(x)圖象的頂點是(-1,3),又f(0)=4,一次函數y=g(x)的圖象過(-2,0)和(0,2).
(1)求函數y=f(x)和函數y=g(x)的解析式;
(2)求關于x的不等式f(x)>3g(x)的解集.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數y=f(x)的圖象關于直線x=2對稱,且在x軸上截得的線段長為2.若f(x)的最小值為-1,求:
(1)函數f(x)的解析式;
(2)函數f(x)在[t,t+1]上的最小值g(t).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數y=f(x)的圖象如圖所示:
(1)求函數y=f(x)的解析式;
(2)根據圖象寫出不等式f(x)>0的解集;
(3)若方程|f(x)|=k有兩個不相等的實數根,根據函數圖象及變換知識,求k的取值的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數y=f(x)=x2+bx+c的圖象過點(1,13),且函數y=f(x-
12
)
是偶函數.
(1)求f(x)的解析式;
(2)已知t<2,g(x)=[f(x)-x2-13]•|x|,求函數g(x)在[t,2]上的最大值和最小值;
(3)函數y=f(x)的圖象上是否存在這樣的點,其橫坐標是正整數,縱坐標是一個完全平方數?如果存在,求出這樣的點的坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案