8.平面直角坐標(biāo)系xOy中,已知向量$\overrightarrow{OA}$與$\overrightarrow{OB}$關(guān)于y軸對稱,向量$\overrightarrow{a}$=(1,0),則滿足$\overrightarrow{O{A}^{2}}$+$\overrightarrow{a}$$•\overrightarrow{AB}$=0的點A(x,y)的軌跡方程為( 。
A.(x+1)2+y2=1B.(x-1)2+y2=1C.x2+y2=1D.x2+(y-1)2=1

分析 由題意求出點B的坐標(biāo),并用點A的坐標(biāo)表示出,利用向量的數(shù)量積的基本運算及性質(zhì)即可求得點A(x,y)的軌跡方程.

解答 解:∵向量$\overrightarrow{OA}$與$\overrightarrow{OB}$關(guān)于y軸對稱,且點A(x,y),可得B(-x,y),
∴$\overrightarrow{AB}$=(-2x,0).
由$\overrightarrow{O{A}^{2}}$+$\overrightarrow{a}$$•\overrightarrow{AB}$=0,得x2+y2+(1,0)•(-2x,0)=0,
即x2+y2-2x=0,
即(x-1)2+y2=1.
故選:B.

點評 本題考查軌跡方程的求法,主要考查了向量在幾何中的應(yīng)用,向量的基本運算以及計算能力和轉(zhuǎn)化思想的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=3cosx是( 。
A.奇函數(shù)B.偶函數(shù)
C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.六個人站成一排照相,則甲、乙兩人之間恰好站兩人的概率為(  )
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.從[0,1]內(nèi)隨機取兩個數(shù)a,b,則使a≥2b的概率為( 。
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{1-|x|,x<1}\\{{{(x-1)}^2},x>1}\end{array}}\right.$,若方程f2(x)+af(x)+b=0有五個不同的根,則a的取值范圍為(-2,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系中,以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.已知曲線C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+tcosα\\ y=tsinα\end{array}\right.$(t為參數(shù),α為直線的傾斜角).
(I)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C有唯一的公共點,求角α的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.從集合A={-2,-1,2}中隨機選取一個數(shù)記為a,從集合B={-1,1,3}中隨機選取一個數(shù)記為b,則直線ax-y+b=0不經(jīng)過第四象限的概率為( 。
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\{4^x},x≤0\end{array}\right.$,則f[f(-1)]=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知a=2,A=$\frac{π}{4}$,B=$\frac{π}{3}$,則c的值為$\sqrt{3}+1$.

查看答案和解析>>

同步練習(xí)冊答案